Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Dec;82(23):7944–7947. doi: 10.1073/pnas.82.23.7944

Stabilization of the long central helix of troponin C by intrahelical salt bridges between charged amino acid side chains.

M Sundaralingam, W Drendel, M Greaser
PMCID: PMC390886  PMID: 3865207

Abstract

The unusual dumbbell shape of troponin C is due to the presence of a long alpha-helix of nine turns that connects the amino- and carboxyl-terminal calcium-binding domains. The center of the long helix appears to be stabilized by several salt bridges. The long helix is also bent about 16 degrees at glycine-92. Calmodulin, which lacks the central glycine, also is predicted to be stabilized by salt bridges in the central helix. The presence of a proline residue in the center of the long helix of ascidian troponin C and the myosin regulatory light chains suggests that a sharper bend may occur in these molecules. The conservation of the bend and salt bridges in the related calcium-binding proteins suggests they may have an important biological function. The structure of troponin C suggests that intrahelix salt bridges between neighboring charged residues may be involved in the stabilization of protein secondary structure. The preponderance of potential salt bridges in other muscle proteins as well may be related to their elongated structures and their participation in the contractile process.

Full text

PDF
7944

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babu Y. S., Sack J. S., Greenhough T. J., Bugg C. E., Means A. R., Cook W. J. Three-dimensional structure of calmodulin. Nature. 1985 May 2;315(6014):37–40. doi: 10.1038/315037a0. [DOI] [PubMed] [Google Scholar]
  2. Collins J. H. Homology of myosin DTNB light chain with alkali light chains, troponin C and parvalbumin. Nature. 1976 Feb 26;259(5545):699–700. doi: 10.1038/259699a0. [DOI] [PubMed] [Google Scholar]
  3. Dedman J. R., Jackson R. L., Schreiber W. E., Means A. R. Sequence homology of the Ca2+-dependent regulator of cyclic nucleotide phosphodiesterase from rat testis with other Ca2+-binding proteins. J Biol Chem. 1978 Jan 25;253(2):343–346. [PubMed] [Google Scholar]
  4. Herzberg O., James M. N. Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution. Nature. 1985 Feb 21;313(6004):653–659. doi: 10.1038/313653a0. [DOI] [PubMed] [Google Scholar]
  5. Jamieson G. A., Jr, Bronson D. D., Schachat F. H., Vanaman T. C. Structure and function relationships among calmodulins and troponin C-like proteins from divergent eukaryotic organisms. Ann N Y Acad Sci. 1980;356:1–13. doi: 10.1111/j.1749-6632.1980.tb29593.x. [DOI] [PubMed] [Google Scholar]
  6. Kretsinger R. H., Barry C. D. The predicted structure of the calcium-binding component of troponin. Biochim Biophys Acta. 1975 Sep 9;405(1):40–52. doi: 10.1016/0005-2795(75)90312-8. [DOI] [PubMed] [Google Scholar]
  7. Matsuda G., Maita T., Suzuyama Y., Setoguchi M., Umegane T. Amino acid sequence of the L-2 light chain of rabbit skeletal muscle myosin. J Biochem. 1977 Mar;81(3):809–811. doi: 10.1093/oxfordjournals.jbchem.a131520. [DOI] [PubMed] [Google Scholar]
  8. Matsuda G. The light chains of muscle myosin: its structure, function, and evolution. Adv Biophys. 1983;16:185–218. doi: 10.1016/0065-227x(83)90009-6. [DOI] [PubMed] [Google Scholar]
  9. Maxfield F. R., Scheraga H. A. The effect of neighboring charges on the helix forming ability of charged amino acids in proteins. Macromolecules. 1975 Jul-Aug;8(4):491–493. doi: 10.1021/ma60046a022. [DOI] [PubMed] [Google Scholar]
  10. McLachlan A. D., Stewart M. Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. J Mol Biol. 1975 Oct 25;98(2):293–304. doi: 10.1016/s0022-2836(75)80119-7. [DOI] [PubMed] [Google Scholar]
  11. Pearlstone J. R., Carpenter M. R., Johnson P., Smillie L. B. Amino-acid sequence of tropomyosin-binding component of rabbit skeletal muscle troponin. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1902–1906. doi: 10.1073/pnas.73.6.1902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pearlstone J. R., Smillie L. B. The binding site of skeletal alpha-tropomyosin on troponin-T. Can J Biochem. 1977 Oct;55(10):1032–1038. doi: 10.1139/o77-154. [DOI] [PubMed] [Google Scholar]
  13. Putkey J. A., Ts'ui K. F., Tanaka T., Lagacé L., Stein J. P., Lai E. C., Means A. R. Chicken calmodulin genes. A species comparison of cDNA sequences and isolation of a genomic clone. J Biol Chem. 1983 Oct 10;258(19):11864–11870. [PubMed] [Google Scholar]
  14. Romero-Herrera A. E., Castillo O., Lehmann H. Human skeletal muscle proteins. The primary structure of troponin C. J Mol Evol. 1976 Oct 27;8(3):251–270. doi: 10.1007/BF01730999. [DOI] [PubMed] [Google Scholar]
  15. Sasagawa T., Ericsson L. H., Walsh K. A., Schreiber W. E., Fischer E. H., Titani K. Complete amino acid sequence of human brain calmodulin. Biochemistry. 1982 May 11;21(10):2565–2569. doi: 10.1021/bi00539a041. [DOI] [PubMed] [Google Scholar]
  16. Stein J. P., Munjaal R. P., Lagace L., Lai E. C., O'Malley B. W., Means A. R. Tissue-specific expression of a chicken calmodulin pseudogene lacking intervening sequences. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6485–6489. doi: 10.1073/pnas.80.21.6485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sundaralingam M., Bergstrom R., Strasburg G., Rao S. T., Roychowdhury P., Greaser M., Wang B. C. Molecular structure of troponin C from chicken skeletal muscle at 3-angstrom resolution. Science. 1985 Feb 22;227(4689):945–948. doi: 10.1126/science.3969570. [DOI] [PubMed] [Google Scholar]
  18. Takagi T., Konishi K. Amino acid sequence of troponin C obtained from ascidian (Halocynthia roretzi) body wall muscle. J Biochem. 1983 Dec;94(6):1753–1760. doi: 10.1093/oxfordjournals.jbchem.a134526. [DOI] [PubMed] [Google Scholar]
  19. Toda H., Yazawa M., Kondo K., Honma T., Narita K., Yagi K. Amino acid sequence of calmodulin from scallop (Patinopecten) adductor muscle. J Biochem. 1981 Nov;90(5):1493–1505. doi: 10.1093/oxfordjournals.jbchem.a133616. [DOI] [PubMed] [Google Scholar]
  20. Watterson D. M., Sharief F., Vanaman T. C. The complete amino acid sequence of the Ca2+-dependent modulator protein (calmodulin) of bovine brain. J Biol Chem. 1980 Feb 10;255(3):962–975. [PubMed] [Google Scholar]
  21. Wilkinson J. M. The amino acid sequence of troponin C from chicken skeletal muscle. FEBS Lett. 1976 Nov;70(1):254–256. doi: 10.1016/0014-5793(76)80769-7. [DOI] [PubMed] [Google Scholar]
  22. Wilkinson J. M. Troponin C from rabbit slow skeletal and cardiac muscle is the product of a single gene. Eur J Biochem. 1980 Jan;103(1):179–188. doi: 10.1111/j.1432-1033.1980.tb04302.x. [DOI] [PubMed] [Google Scholar]
  23. Yazawa M., Yagi K. The amino acid sequence of the calmodulin obtained from sea anemone (metridium senile) muscle. Biochem Biophys Res Commun. 1980 Sep 16;96(1):377–381. doi: 10.1016/0006-291x(80)91225-5. [DOI] [PubMed] [Google Scholar]
  24. van Eerd J. P., Capony J. P., Ferraz C., Pechère J. F. The amino-acid sequence of troponin C from frog skeletal muscle. Eur J Biochem. 1978 Nov 2;91(1):231–242. doi: 10.1111/j.1432-1033.1978.tb20956.x. [DOI] [PubMed] [Google Scholar]
  25. van Eerd J. P., Takahshi K. Determination of the complete amino acid sequence of bovine cardiac troponin C. Biochemistry. 1976 Mar 9;15(5):1171–1180. doi: 10.1021/bi00650a033. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES