Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Dec;82(23):7948–7951. doi: 10.1073/pnas.82.23.7948

Confirmation of the assignment of the low-field proton resonance of serine proteases by using specifically nitrogen-15 labeled enzyme.

W W Bachovchin
PMCID: PMC390887  PMID: 3934665

Abstract

Proton NMR spectra of serine proteases in 1H2O solutions typically show a single resonance at very low magnetic field--i.e., 14-18 ppm from dimethylsilylapentanesulfonate. This resonance has been assigned to the proton hydrogen bonded between aspartic acid-102 and histidine-57 (chymotrypsin numbering system) of the "charge-relay system" or catalytic triad of serine proteases [Robillard, G. & Shulman, R. G. (1972) J. Mol. Biol. 71, 507-511]. Since then, there have been a number of reports that have cast doubt on its correctness. In the present work we have tested this assignment using alpha-lytic protease (EC 3.4.21.12, Myxobacter alpha-lytic proteinase), a bacterial serine protease homologous to elastase, which is specifically labeled with nitrogen-15 at N delta 1 of its single histidine residue. The low-field region of the proton spectra of this labeled enzyme shows a single resonance having the properties reported [Robillard, G. & Shulman, R. G. (1974) J. Mol. Biol. 86, 519-540], which, in addition, exhibits spin-spin splitting to the nitrogen-15 label. The observation of this 15N delta 1-H coupling makes the assignment of this resonance to the charge-relay proton unequivocal.

Full text

PDF
7948

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birktoft J. J., Kraut J., Freer S. T. A detailed structural comparison between the charge relay system in chymotrypsinogen and in alpha-chymotrypsin. Biochemistry. 1976 Oct 5;15(20):4481–4485. doi: 10.1021/bi00665a023. [DOI] [PubMed] [Google Scholar]
  2. Hunkapiller M. W., Forgac M. D., Richards J. H. Mechanism of action of serine proteases: tetrahedral intermediate and concerted proton transfer. Biochemistry. 1976 Dec 14;15(25):5581–5588. doi: 10.1021/bi00670a024. [DOI] [PubMed] [Google Scholar]
  3. Hunkapiller M. W., Smallcombe S. H., Whitaker D. R., Richards J. H. Carbon nuclear magnetic resonance studies of the histidine residue in alpha-lytic protease. Implications for the catalytic mechanism of serine proteases. Biochemistry. 1973 Nov 6;12(23):4732–4743. doi: 10.1021/bi00747a028. [DOI] [PubMed] [Google Scholar]
  4. Jordan F., Polgár L. Proton nuclear magnetic resonance evidence for the absence of a stable hydrogen bond between the active site aspartate and histidine residues of native subtilisins and for its presence in thiolsubtilisins. Biochemistry. 1981 Oct 27;20(22):6366–6370. doi: 10.1021/bi00525a013. [DOI] [PubMed] [Google Scholar]
  5. Markley J. L. Hydrogen bonds in serine proteinases and their complexes with protein proteinase inhibitors. Proton nuclear magnetic resonance studies. Biochemistry. 1978 Oct 31;17(22):4648–4656. doi: 10.1021/bi00615a010. [DOI] [PubMed] [Google Scholar]
  6. Markley J. L., Ibañez I. B. Zymogen activation in serine proteinases. Proton magnetic resonance pH titration studies of the two histidines of bovine chymotrypsinogen A and chymotrypsin Aalpha. Biochemistry. 1978 Oct 31;17(22):4627–4640. doi: 10.1021/bi00615a008. [DOI] [PubMed] [Google Scholar]
  7. Markley J. L., Porubcan M. A. The charge-relay system of serine proteinases: proton magnetic resonance titration studies of the four histidines of porcine trypsin. J Mol Biol. 1976 Apr 15;102(3):487–509. doi: 10.1016/0022-2836(76)90330-2. [DOI] [PubMed] [Google Scholar]
  8. Matthews D. A., Alden R. A., Birktoft J. J., Freer T., Kraut J. Re-examination of the charge relay system in subtilisin comparison with other serine proteases. J Biol Chem. 1977 Dec 25;252(24):8875–8883. [PubMed] [Google Scholar]
  9. Robillard G., Shulman R. G. High resolution nuclear magnetic resonance studies of the active site of chymotrypsin. I. The hydrogen bonded protons of the "charge relay" system. J Mol Biol. 1974 Jul 5;86(3):519–540. doi: 10.1016/0022-2836(74)90178-8. [DOI] [PubMed] [Google Scholar]
  10. Robillard G., Shulman R. G. High resolution nuclear magnetic resonance studies of the active site of chymotrypsin. II. Polarization of histidine 57 by substrate analogues and competitive inhibitors. J Mol Biol. 1974 Jul 5;86(3):541–558. doi: 10.1016/0022-2836(74)90179-x. [DOI] [PubMed] [Google Scholar]
  11. Robillard G., Shulman R. G. High resolution nuclear magnetic resonance study of the histidine--aspartate hydrogen bond in chymotrypsin and chymotrypsinogen. J Mol Biol. 1972 Nov 14;71(2):507–511. doi: 10.1016/0022-2836(72)90366-x. [DOI] [PubMed] [Google Scholar]
  12. Roy S., Papastavros M. Z., Sanchez V., Redfield A. G. Nitrogen-15-labeled yeast tRNAPhe: double and two-dimensional heteronuclear NMR of guanosine and uracil ring NH groups. Biochemistry. 1984 Sep 11;23(19):4395–4400. doi: 10.1021/bi00314a024. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES