Abstract
The crystal structure of Lys-7-(dinitrophenylene)-Lys-41-cross-linked ribonuclease A has been determined by molecular replacement and refined by restrained least-squares methods to an R factor of 0.18 at 2.0-A resolution. Diffraction intensity data were collected by using a conventional diffractometer and an x-ray area detector. Comparison of the thermostable cross-linked protein and the native enzyme shows them to be structurally similar, with a rms difference in backbone and side-chain atoms of 0.52 and 1.34 A, respectively. Native and modified proteins additionally show 35 common bound solvent sites and similar overall temperature factor behavior, despite localized differences resulting from cross-link introduction, altered crystal pH, or lattice interactions with neighboring molecules. These results are discussed in the context of proposals on the origins of thermostability in the cross-linked enzyme.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allewell N. M., Mitsui Y., Wyckoff H. W. X-ray diffraction studies of epsilon-41-dinitropheny-ribonuclease-S. J Biol Chem. 1973 Aug 10;248(15):5291–5298. [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Fehlhammer H., Bode W. The refined crystal structure of bovine beta-trypsin at 1.8 A resolution. I. Crystallization, data collection and application of patterson search technique. J Mol Biol. 1975 Nov 15;98(4):683–692. doi: 10.1016/s0022-2836(75)80004-0. [DOI] [PubMed] [Google Scholar]
- Finzel B. C., Salemme F. R. Lattice mobility and anomalous temperature factor behaviour in cytochrome c'. Nature. 1985 Jun 20;315(6021):686–688. doi: 10.1038/315686a0. [DOI] [PubMed] [Google Scholar]
- Grütter M. G., Hawkes R. B., Matthews B. W. Molecular basis of thermostability in the lysozyme from bacteriophage T4. Nature. 1979 Feb 22;277(5698):667–669. doi: 10.1038/277667a0. [DOI] [PubMed] [Google Scholar]
- Hendrickson W. A. Radiation damage in protein crystallography. J Mol Biol. 1976 Sep 25;106(3):889–893. doi: 10.1016/0022-2836(76)90271-0. [DOI] [PubMed] [Google Scholar]
- Karplus M., McCammon J. A. Dynamics of proteins: elements and function. Annu Rev Biochem. 1983;52:263–300. doi: 10.1146/annurev.bi.52.070183.001403. [DOI] [PubMed] [Google Scholar]
- Kartha G., Bello J., Harker D. Tertiary structure of ribonuclease. Nature. 1967 Mar 4;213(5079):862–865. doi: 10.1038/213862a0. [DOI] [PubMed] [Google Scholar]
- Lin S. H., Konishi Y., Denton M. E., Scheraga H. A. Influence of an extrinsic cross-link on the folding pathway of ribonuclease A. Conformational and thermodynamic analysis of cross-linked (lysine7-lysine41)-ribonuclease a. Biochemistry. 1984 Nov 6;23(23):5504–5512. doi: 10.1021/bi00318a019. [DOI] [PubMed] [Google Scholar]
- Sheriff S., Hendrickson W. A., Stenkamp R. E., Sieker L. C., Jensen L. H. Influence of solvent accessibility and intermolecular contacts on atomic mobilities in hemerythrins. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1104–1107. doi: 10.1073/pnas.82.4.1104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber P. C., Salemme F. R., Lin S. H., Konishi Y., Scheraga H. A. Preliminary crystallographic data for cross-linked (lysine7-lysine41)-ribonuclease A. J Mol Biol. 1985 Feb 5;181(3):453–453. doi: 10.1016/0022-2836(85)90232-3. [DOI] [PubMed] [Google Scholar]
- Wlodawer A., Sjölin L. Structure of ribonuclease A: results of joint neutron and X-ray refinement at 2.0-A resolution. Biochemistry. 1983 May 24;22(11):2720–2728. doi: 10.1021/bi00280a021. [DOI] [PubMed] [Google Scholar]