Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Jul;82(14):4712–4716. doi: 10.1073/pnas.82.14.4712

cAMP-dependent phosphorylation of bovine lens alpha-crystallin.

A Spector, R Chiesa, J Sredy, W Garner
PMCID: PMC390974  PMID: 2991889

Abstract

This communication reports that the A1 and B1 chains of bovine lens alpha-crystallin are phosphorylated. The conclusion is based on the following evidence: (i) When soluble preparations from lens cortex are incubated with [gamma-32P]ATP, a cAMP-dependent labeling of a high molecular weight protein is obtained. (ii) After NaDodSO4/PAGE, the label is found in two bands with Mr 22,000 and 20,000, corresponding to the B and A chains of alpha-crystallin, respectively. (iii) Isoelectric focusing indicates that the radioactivity is almost exclusively in bands with pI values of 5.58 and 6.70, corresponding to the A1 and B1 chains, respectively. (iv) Similar results are obtained in experiments of [32P]orthophosphate incorporation in lens organ culture. (v) Analyses of the digested protein indicate the label is exclusively in phosphoserine. (vi) 31P NMR analyses of native, proteolytically digested, and urea-treated alpha-crystallin gives a chemical shift of 4.6 ppm relative to 85% H3PO4 at pH 7.4, suggesting that the phosphate is covalently bound to a serine in the protein. An abundance of approximately one phosphate per four or five monomer units was found. (vii) Similar results were obtained by chemical analyses of independently prepared alpha-crystallin samples. The results are consistent with the view that the A1 and B1 chains arise as result of the phosphorylation of directly synthesized A2 and B2 polypeptides. It is suggested that this metabolically controlled phosphorylation may be associated with the terminal differentiation of the lens epithelial cell and the intracellular organization of the lens fiber cell.

Full text

PDF
4712

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bindels J. G., de Man B. M., Hoenders H. J. High-performance gel permeation chromatography of bovine eye lens proteins in combination with low-angle laser light scattering. Superior resolution of the oligomeric beta-crystallins. J Chromatogr. 1982 Dec 3;252:255–267. doi: 10.1016/s0021-9673(01)88416-8. [DOI] [PubMed] [Google Scholar]
  2. Bloemendal H., Berns A. J., van der Ouderaa F., de Jong W. W. Evidence for a "non-genetic" origin of the A1 chains of alpha-crystallin. Exp Eye Res. 1972 Jul;14(1):80–81. doi: 10.1016/0014-4835(72)90147-9. [DOI] [PubMed] [Google Scholar]
  3. Bloemendal H., Hermsen T., Dunia I., Benedetti E. L. Association of crystallins with the plasma membrane. Exp Eye Res. 1982 Jul;35(1):61–67. doi: 10.1016/s0014-4835(82)80023-7. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Buss J. E., Stull J. T. Measurement of chemical phosphate in proteins. Methods Enzymol. 1983;99:7–14. doi: 10.1016/0076-6879(83)99035-3. [DOI] [PubMed] [Google Scholar]
  6. Chandler J. W., Leder R., Kaufman H. E., Caldwell J. R. Quantitative determinations of complement components and immunoglobulins in tears and aqueous humor. Invest Ophthalmol. 1974 Feb;13(2):151–153. [PubMed] [Google Scholar]
  7. Garland D., Russell P. Phosphorylation of lens fiber cell membrane proteins. Proc Natl Acad Sci U S A. 1985 Feb;82(3):653–657. doi: 10.1073/pnas.82.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hunter T., Sefton B. M. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1311–1315. doi: 10.1073/pnas.77.3.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ireland M., Maisel H. Phosphorylation of chick lens proteins. Curr Eye Res. 1984 Jul;3(7):961–968. doi: 10.3109/02713688409167214. [DOI] [PubMed] [Google Scholar]
  10. Krebs E. G. Historical perspectives on protein phosphorylation and a classification system for protein kinases. Philos Trans R Soc Lond B Biol Sci. 1983 Jul 5;302(1108):3–11. doi: 10.1098/rstb.1983.0033. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Li L. K. Effects of sucrose on interactions of calf lens soluble proteins. Exp Eye Res. 1978 Nov;27(5):553–566. doi: 10.1016/0014-4835(78)90140-9. [DOI] [PubMed] [Google Scholar]
  13. Matheis G., Whitaker J. R. 31P NMR chemical shifts of phosphate covalently bound to proteins. Int J Biochem. 1984;16(8):867–873. doi: 10.1016/0020-711x(84)90145-9. [DOI] [PubMed] [Google Scholar]
  14. Ramaekers F. C., Selten-Versteegen A. M., Bloemendal H. Interaction of newly synthesized alpha-crystallin with isolated lens plasma membranes. Biochim Biophys Acta. 1980 Feb 15;596(1):57–63. doi: 10.1016/0005-2736(80)90170-4. [DOI] [PubMed] [Google Scholar]
  15. Simonneau L., Herve B., Jacquemin E., Courtois Y. State of differentiation of bovine epithelial lens cells in vitro. Relationship between the variation of the cell shape and the synthesis of crystallins. Cell Differ. 1983 Nov;13(3):185–190. doi: 10.1016/0045-6039(83)90088-x. [DOI] [PubMed] [Google Scholar]
  16. Sredy J., Roy D., Spector A. Identification of two of the major phosphorylated polypeptides of the bovine lens utilizing a lens cAMP-dependent protein kinase system. Curr Eye Res. 1984 Dec;3(12):1423–1431. doi: 10.3109/02713688409000838. [DOI] [PubMed] [Google Scholar]
  17. Sredy J., Spector A. The phosphorylation of bovine and human lens polypeptides. Exp Eye Res. 1984 Nov;39(5):653–664. doi: 10.1016/0014-4835(84)90064-2. [DOI] [PubMed] [Google Scholar]
  18. Van Kleef F. S., De Jong W. W., Hoenders H. J. Stepwise degradations and deamidation of the eye lens protein alpha-crystallin in ageing. Nature. 1975 Nov 20;258(5532):264–266. doi: 10.1038/258264a0. [DOI] [PubMed] [Google Scholar]
  19. Van Ventooij W. J., De Jong W. W., Janssen A., Bloemendal H. In vitro formation of alpha A1 from alpha A2 chains of alpha-crystallin. Exp Eye Res. 1974 Aug;19(2):157–162. doi: 10.1016/0014-4835(74)90031-1. [DOI] [PubMed] [Google Scholar]
  20. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES