Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Jul;82(14):4753–4757. doi: 10.1073/pnas.82.14.4753

Ancient origin for Hawaiian Drosophilinae inferred from protein comparisons.

S M Beverley, A C Wilson
PMCID: PMC390983  PMID: 3860822

Abstract

Immunological comparisons of a larval hemolymph protein enabled us to build a tree relating major groups of drosophiline flies in Hawaii to one another and to continental flies. The tree agrees in topology with that based on internal anatomy. Relative rate tests suggest that evolution of hemolymph proteins has been about as fast in Hawaii as on continents. Since the absolute rate of evolution of hemolymph proteins in continental flies is known, one can erect an approximate time scale for Hawaiian fly evolution. According to this scale, the Hawaiian fly fauna stems from a colonist that landed on the archipelago about 42 million years ago-i.e., before any of the present islands harboring drosophilines formed. This date fits with the geological history of the archipelago, which has witnessed the sequential rise and erosion of many islands during the past 70 million years. We discuss the bearing of the molecular time scale on views about rates of organismal evolution in the Hawaiian flies.

Full text

PDF
4753

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benjamin D. C., Berzofsky J. A., East I. J., Gurd F. R., Hannum C., Leach S. J., Margoliash E., Michael J. G., Miller A., Prager E. M. The antigenic structure of proteins: a reappraisal. Annu Rev Immunol. 1984;2:67–101. doi: 10.1146/annurev.iy.02.040184.000435. [DOI] [PubMed] [Google Scholar]
  2. Beverley S. M., Wilson A. C. Molecular evolution in Drosophila and the higher Diptera II. A time scale for fly evolution. J Mol Evol. 1984;21(1):1–13. doi: 10.1007/BF02100622. [DOI] [PubMed] [Google Scholar]
  3. Beverley S. M., Wilson A. C. Molecular evolution of Drosophila and higher Diptera. I. Micro-complement fixation studies of a larval hemolymph protein. J Mol Evol. 1982;18(4):251–264. doi: 10.1007/BF01734103. [DOI] [PubMed] [Google Scholar]
  4. Bush G. L., Case S. M., Wilson A. C., Patton J. L. Rapid speciation and chromosomal evolution in mammals. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3942–3946. doi: 10.1073/pnas.74.9.3942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carlson S. S., Wilson A. C., Maxson R. D. Do albumin clocks run on time? Science. 1978 Jun 9;200(4346):1183–1185. doi: 10.1126/science.200.4346.1183. [DOI] [PubMed] [Google Scholar]
  6. Carson H. L. Chromosomal sequences and interisland colonizations in hawaiian Drosophila. Genetics. 1983 Mar;103(3):465–482. doi: 10.1093/genetics/103.3.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carson H. L. Inference of the time of origin of some Drosophila species. Nature. 1976 Feb 5;259(5542):395–396. doi: 10.1038/259395a0. [DOI] [PubMed] [Google Scholar]
  8. Hunt J. A., Carson H. L. Evolutionary relationships of four species of hawaiian Drosophila as measured by DNA reassociation. Genetics. 1983 Jun;104(2):353–364. doi: 10.1093/genetics/104.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hunt J. A., Hall T. J., Britten R. J. Evolutionary distances in Hawaiian Drosophila measured by DNA reassociation. J Mol Evol. 1981;17(6):361–367. doi: 10.1007/BF01734358. [DOI] [PubMed] [Google Scholar]
  10. Kambysellis M. P. Compatibility in insect tissue transplantations. I. Ovarian transplantations and hybrid formation between Drosophila species endemic to Hawaii. J Exp Zool. 1970 Oct;175(2):169–180. doi: 10.1002/jez.1401750206. [DOI] [PubMed] [Google Scholar]
  11. Prager E. M., Wilson A. C. Construction of phylogenetic trees for proteins and nucleic acids: empirical evaluation of alternative matrix methods. J Mol Evol. 1978 Jun 20;11(2):129–142. doi: 10.1007/BF01733889. [DOI] [PubMed] [Google Scholar]
  12. Templeton A. R. The theory of speciation via the founder principle. Genetics. 1980 Apr;94(4):1011–1038. doi: 10.1093/genetics/94.4.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Throckmorton L. H. Concordance and discordance of taxonomic characters in Drosophila classification. Syst Zool. 1968 Dec;17(4):355–387. [PubMed] [Google Scholar]
  14. Wilson A. C., Carlson S. S., White T. J. Biochemical evolution. Annu Rev Biochem. 1977;46:573–639. doi: 10.1146/annurev.bi.46.070177.003041. [DOI] [PubMed] [Google Scholar]
  15. Wyles J. S., Kunkel J. G., Wilson A. C. Birds, behavior, and anatomical evolution. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4394–4397. doi: 10.1073/pnas.80.14.4394. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES