Abstract
Cholinergic pathways serve important functions in learning and memory processes, and deficits in cholinergic transmission occur in Alzheimer disease (AD). A subset of muscarinic cholinergic receptors are linked to G-proteins that activate phospholipase C, resulting in the liberation of inositol trisphosphate and Ca2+ release from intracellular stores. We now report that amyloid beta-peptide (Abeta), which forms plaques in the brain in AD, impairs muscarinic receptor activation of G proteins in cultured rat cortical neurons. Exposure of rodent fetal cortical neurons to Abeta25-35 and Abeta1-40 resulted in a concentration and time-dependent attenuation of carbachol-induced GTPase activity without affecting muscarinic receptor ligand binding parameters. Downstream events in the signal transduction cascade were similarly attenuated by Abeta. Carbachol-induced accumulation of inositol phosphates (IP, IP2, IP3, and IP4) was decreased and calcium imaging studies revealed that carbachol-induced release of calcium was severely impaired in neurons pretreated with Abeta. Muscarinic cholinergic signal transduction was disrupted with subtoxic levels of exposure to AP. The effects of Abeta on carbachol-induced GTPase activity and calcium release were attenuated by antioxidants, implicating free radicals in the mechanism whereby Abeta induced uncoupling of muscarinic receptors. These data demonstrate that Abeta disrupts muscarinic receptor coupling to G proteins that mediate induction of phosphoinositide accumulation and calcium release, findings that implicate Abeta in the impairment of cholinergic transmission that occurs in AD.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Araujo D. M., Lapchak P. A., Robitaille Y., Gauthier S., Quirion R. Differential alteration of various cholinergic markers in cortical and subcortical regions of human brain in Alzheimer's disease. J Neurochem. 1988 Jun;50(6):1914–1923. doi: 10.1111/j.1471-4159.1988.tb02497.x. [DOI] [PubMed] [Google Scholar]
- Bartus R. T., Dean R. L., 3rd, Beer B., Lippa A. S. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982 Jul 30;217(4558):408–414. doi: 10.1126/science.7046051. [DOI] [PubMed] [Google Scholar]
- Behl C., Davis J. B., Lesley R., Schubert D. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell. 1994 Jun 17;77(6):817–827. doi: 10.1016/0092-8674(94)90131-7. [DOI] [PubMed] [Google Scholar]
- Berridge M. J., Downes C. P., Hanley M. R. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J. 1982 Sep 15;206(3):587–595. doi: 10.1042/bj2060587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bridges R. S., Felicio L. F., Pellerin L. J., Stuer A. M., Mann P. E. Prior parity reduces post-coital diurnal and nocturnal prolactin surges in rats. Life Sci. 1993;53(5):439–445. doi: 10.1016/0024-3205(93)90648-m. [DOI] [PubMed] [Google Scholar]
- Butterfield D. A., Hensley K., Harris M., Mattson M., Carney J. beta-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer's disease. Biochem Biophys Res Commun. 1994 Apr 29;200(2):710–715. doi: 10.1006/bbrc.1994.1508. [DOI] [PubMed] [Google Scholar]
- Buxbaum J. D., Oishi M., Chen H. I., Pinkas-Kramarski R., Jaffe E. A., Gandy S. E., Greengard P. Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer beta/A4 amyloid protein precursor. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10075–10078. doi: 10.1073/pnas.89.21.10075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cassel D., Selinger Z. Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes. Biochim Biophys Acta. 1976 Dec 8;452(2):538–551. doi: 10.1016/0005-2744(76)90206-0. [DOI] [PubMed] [Google Scholar]
- Collerton D. Cholinergic function and intellectual decline in Alzheimer's disease. Neuroscience. 1986 Sep;19(1):1–28. doi: 10.1016/0306-4522(86)90002-3. [DOI] [PubMed] [Google Scholar]
- Cowburn R. F., O'Neill C., Ravid R., Alafuzoff I., Winblad B., Fowler C. J. Adenylyl cyclase activity in postmortem human brain: evidence of altered G protein mediation in Alzheimer's disease. J Neurochem. 1992 Apr;58(4):1409–1419. doi: 10.1111/j.1471-4159.1992.tb11357.x. [DOI] [PubMed] [Google Scholar]
- Cutler R., Joseph J. A., Yamagami K., Villalobos-Molina R., Roth G. S. Area specific alterations in muscarinic stimulated low Km GTPase activity in aging and Alzheimer's disease: implications for altered signal transduction. Brain Res. 1994 Nov 21;664(1-2):54–60. doi: 10.1016/0006-8993(94)91953-4. [DOI] [PubMed] [Google Scholar]
- De Keyser J., Ebinger G., Vauquelin G. D1-dopamine receptor abnormality in frontal cortex points to a functional alteration of cortical cell membranes in Alzheimer's disease. Arch Neurol. 1990 Jul;47(7):761–763. doi: 10.1001/archneur.1990.00530070055011. [DOI] [PubMed] [Google Scholar]
- Etcheberrigaray R., Ito E., Kim C. S., Alkon D. L. Soluble beta-amyloid induction of Alzheimer's phenotype for human fibroblast K+ channels. Science. 1994 Apr 8;264(5156):276–279. doi: 10.1126/science.8146663. [DOI] [PubMed] [Google Scholar]
- Exton J. H. Role of G proteins in activation of phosphoinositide phospholipase C. Adv Second Messenger Phosphoprotein Res. 1993;28:65–72. [PubMed] [Google Scholar]
- Flynn D. D., Ferrari-DiLeo G., Mash D. C., Levey A. I. Differential regulation of molecular subtypes of muscarinic receptors in Alzheimer's disease. J Neurochem. 1995 Apr;64(4):1888–1891. doi: 10.1046/j.1471-4159.1995.64041888.x. [DOI] [PubMed] [Google Scholar]
- Flynn D. D., Weinstein D. A., Mash D. C. Loss of high-affinity agonist binding to M1 muscarinic receptors in Alzheimer's disease: implications for the failure of cholinergic replacement therapies. Ann Neurol. 1991 Mar;29(3):256–262. doi: 10.1002/ana.410290305. [DOI] [PubMed] [Google Scholar]
- French J. F., Thomas C. E., Downs T. R., Ohlweiler D. F., Carr A. A., Dage R. C. Protective effects of a cyclic nitrone antioxidant in animal models of endotoxic shock and chronic bacteremia. Circ Shock. 1994 Jul;43(3):130–136. [PubMed] [Google Scholar]
- Ghodsi-Hovsepian S., Messer W. S., Jr, Hoss W. Differential coupling between muscarinic receptors and G-proteins in regions of the rat brain. Biochem Pharmacol. 1990 Apr 15;39(8):1385–1391. doi: 10.1016/0006-2952(90)90016-e. [DOI] [PubMed] [Google Scholar]
- Goodman Y., Mattson M. P. Secreted forms of beta-amyloid precursor protein protect hippocampal neurons against amyloid beta-peptide-induced oxidative injury. Exp Neurol. 1994 Jul;128(1):1–12. doi: 10.1006/exnr.1994.1107. [DOI] [PubMed] [Google Scholar]
- Greenwood A. F., Powers R. E., Jope R. S. Phosphoinositide hydrolysis, G alpha q, phospholipase C, and protein kinase C in post mortem human brain: effects of post mortem interval, subject age, and Alzheimer's disease. Neuroscience. 1995 Nov;69(1):125–138. doi: 10.1016/0306-4522(95)00220-d. [DOI] [PubMed] [Google Scholar]
- Hartmann H., Eckert A., Müller W. E. beta-Amyloid protein amplifies calcium signalling in central neurons from the adult mouse. Biochem Biophys Res Commun. 1993 Aug 16;194(3):1216–1220. doi: 10.1006/bbrc.1993.1952. [DOI] [PubMed] [Google Scholar]
- Hensley K., Carney J. M., Mattson M. P., Aksenova M., Harris M., Wu J. F., Floyd R. A., Butterfield D. A. A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3270–3274. doi: 10.1073/pnas.91.8.3270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang H. M., Gibson G. E. Altered beta-adrenergic receptor-stimulated cAMP formation in cultured skin fibroblasts from Alzheimer donors. J Biol Chem. 1993 Jul 15;268(20):14616–14621. [PubMed] [Google Scholar]
- Khatoon S., Grundke-Iqbal I., Iqbal K. Guanosine triphosphate binding to beta-subunit of tubulin in Alzheimer's disease brain: role of microtubule-associated protein tau. J Neurochem. 1995 Feb;64(2):777–787. doi: 10.1046/j.1471-4159.1995.64020777.x. [DOI] [PubMed] [Google Scholar]
- Knipper M., da Penha Berzaghi M., Blöchl A., Breer H., Thoenen H., Lindholm D. Positive feedback between acetylcholine and the neurotrophins nerve growth factor and brain-derived neurotrophic factor in the rat hippocampus. Eur J Neurosci. 1994 Apr 1;6(4):668–671. doi: 10.1111/j.1460-9568.1994.tb00312.x. [DOI] [PubMed] [Google Scholar]
- Koh J. Y., Yang L. L., Cotman C. W. Beta-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res. 1990 Nov 19;533(2):315–320. doi: 10.1016/0006-8993(90)91355-k. [DOI] [PubMed] [Google Scholar]
- Mark R. J., Hensley K., Butterfield D. A., Mattson M. P. Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J Neurosci. 1995 Sep;15(9):6239–6249. doi: 10.1523/JNEUROSCI.15-09-06239.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattson M. P., Barger S. W., Begley J. G., Mark R. J. Calcium, free radicals, and excitotoxic neuronal death in primary cell culture. Methods Cell Biol. 1995;46:187–216. doi: 10.1016/s0091-679x(08)61930-5. [DOI] [PubMed] [Google Scholar]
- Mattson M. P., Cheng B., Culwell A. R., Esch F. S., Lieberburg I., Rydel R. E. Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein. Neuron. 1993 Feb;10(2):243–254. doi: 10.1016/0896-6273(93)90315-i. [DOI] [PubMed] [Google Scholar]
- Mattson M. P., Cheng B., Davis D., Bryant K., Lieberburg I., Rydel R. E. beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci. 1992 Feb;12(2):376–389. doi: 10.1523/JNEUROSCI.12-02-00376.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattson M. P., Tomaselli K. J., Rydel R. E. Calcium-destabilizing and neurodegenerative effects of aggregated beta-amyloid peptide are attenuated by basic FGF. Brain Res. 1993 Sep 3;621(1):35–49. doi: 10.1016/0006-8993(93)90295-x. [DOI] [PubMed] [Google Scholar]
- McLaughlin M., Ross B. M., Milligan G., McCulloch J., Knowler J. T. Robustness of G proteins in Alzheimer's disease: an immunoblot study. J Neurochem. 1991 Jul;57(1):9–14. doi: 10.1111/j.1471-4159.1991.tb02092.x. [DOI] [PubMed] [Google Scholar]
- Müller W. E., Koch S., Eckert A., Hartmann H., Scheuer K. beta-Amyloid peptide decreases membrane fluidity. Brain Res. 1995 Mar 13;674(1):133–136. doi: 10.1016/0006-8993(94)01463-r. [DOI] [PubMed] [Google Scholar]
- Nitsch R. M., Slack B. E., Wurtman R. J., Growdon J. H. Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science. 1992 Oct 9;258(5080):304–307. doi: 10.1126/science.1411529. [DOI] [PubMed] [Google Scholar]
- Ohm T. G., Bohl J., Lemmer B. Reduced basal and stimulated (isoprenaline, Gpp(NH)p, forskolin) adenylate cyclase activity in Alzheimer's disease correlated with histopathological changes. Brain Res. 1991 Feb 1;540(1-2):229–236. doi: 10.1016/0006-8993(91)90512-t. [DOI] [PubMed] [Google Scholar]
- Pearce B. D., Potter L. T. Coupling of m1 muscarinic receptors to G protein in Alzheimer disease. Alzheimer Dis Assoc Disord. 1991 Fall;5(3):163–172. doi: 10.1097/00002093-199100530-00002. [DOI] [PubMed] [Google Scholar]
- Rohn T. T., Hinds T. R., Vincenzi F. F. Ion transport ATPases as targets for free radical damage. Protection by an aminosteroid of the Ca2+ pump ATPase and Na+/K+ pump ATPase of human red blood cell membranes. Biochem Pharmacol. 1993 Aug 3;46(3):525–534. doi: 10.1016/0006-2952(93)90530-a. [DOI] [PubMed] [Google Scholar]
- Ross B. M., McLaughlin M., Roberts M., Milligan G., McCulloch J., Knowler J. T. Alterations in the activity of adenylate cyclase and high affinity GTPase in Alzheimer's disease. Brain Res. 1993 Sep 17;622(1-2):35–42. doi: 10.1016/0006-8993(93)90798-r. [DOI] [PubMed] [Google Scholar]
- Roth G. S., Joseph J. A., Mason R. P. Membrane alterations as causes of impaired signal transduction in Alzheimer's disease and aging. Trends Neurosci. 1995 May;18(5):203–206. doi: 10.1016/0166-2236(95)93902-a. [DOI] [PubMed] [Google Scholar]
- Schnecko A., Witte K., Bohl J., Ohm T., Lemmer B. Adenylyl cyclase activity in Alzheimer's disease brain: stimulatory and inhibitory signal transduction pathways are differently affected. Brain Res. 1994 May 2;644(2):291–296. doi: 10.1016/0006-8993(94)91692-6. [DOI] [PubMed] [Google Scholar]
- Selkoe D. J. Physiological production of the beta-amyloid protein and the mechanism of Alzheimer's disease. Trends Neurosci. 1993 Oct;16(10):403–409. doi: 10.1016/0166-2236(93)90008-a. [DOI] [PubMed] [Google Scholar]
- Smith C. J., Perry E. K., Perry R. H., Fairbairn A. F., Birdsall N. J. Guanine nucleotide modulation of muscarinic cholinergic receptor binding in postmortem human brain--a preliminary study in Alzheimer's disease. Neurosci Lett. 1987 Nov 23;82(2):227–232. doi: 10.1016/0304-3940(87)90135-2. [DOI] [PubMed] [Google Scholar]
- Villalobos-Molina R., Joseph J. A., Rabin B. M., Kandasamy S. B., Dalton T. K., Roth G. S. Iron-56 irradiation diminishes muscarinic but not alpha 1-adrenergic-stimulated low-Km GTPase in rat brain. Radiat Res. 1994 Dec;140(3):382–386. [PubMed] [Google Scholar]
- Warpman U., Alafuzoff I., Nordberg A. Coupling of muscarinic receptors to GTP proteins in postmortem human brain--alterations in Alzheimer's disease. Neurosci Lett. 1993 Feb 5;150(1):39–43. doi: 10.1016/0304-3940(93)90103-r. [DOI] [PubMed] [Google Scholar]
- Weiss J. H., Pike C. J., Cotman C. W. Ca2+ channel blockers attenuate beta-amyloid peptide toxicity to cortical neurons in culture. J Neurochem. 1994 Jan;62(1):372–375. doi: 10.1046/j.1471-4159.1994.62010372.x. [DOI] [PubMed] [Google Scholar]
- Williams L. R. Oxidative stress, age-related neurodegeneration, and the potential for neurotrophic treatment. Cerebrovasc Brain Metab Rev. 1995 Spring;7(1):55–73. [PubMed] [Google Scholar]
- Wu T. W., Fung K. P., Zeng L. H., Wu J., Nakamura H. Propyl gallate as a hepatoprotector in vitro and in vivo. Biochem Pharmacol. 1994 Jul 19;48(2):419–422. doi: 10.1016/0006-2952(94)90115-5. [DOI] [PubMed] [Google Scholar]
- Xie Z., Jack-Hays M., Wang Y., Periyasamy S. M., Blanco G., Huang W. H., Askari A. Different oxidant sensitivities of the alpha 1 and alpha 2 isoforms of Na+/K(+)-ATPase expressed in baculovirus-infected insect cells. Biochem Biophys Res Commun. 1995 Feb 6;207(1):155–159. doi: 10.1006/bbrc.1995.1166. [DOI] [PubMed] [Google Scholar]
- Yamagami K., Joseph J. A., Roth G. S. Decrement of muscarinic receptor-stimulated low-KM GTPase in striatum and hippocampus from the aged rat. Brain Res. 1992 Apr 3;576(2):327–331. doi: 10.1016/0006-8993(92)90698-9. [DOI] [PubMed] [Google Scholar]
- Yankner B. A., Duffy L. K., Kirschner D. A. Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science. 1990 Oct 12;250(4978):279–282. doi: 10.1126/science.2218531. [DOI] [PubMed] [Google Scholar]
- Zhang C., Lambert M. P., Bunch C., Barber K., Wade W. S., Krafft G. A., Klein W. L. Focal adhesion kinase expressed by nerve cell lines shows increased tyrosine phosphorylation in response to Alzheimer's A beta peptide. J Biol Chem. 1994 Oct 14;269(41):25247–25250. [PubMed] [Google Scholar]
- da Penha Berzaghi M., Cooper J., Castrén E., Zafra F., Sofroniew M., Thoenen H., Lindholm D. Cholinergic regulation of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) but not neurotrophin-3 (NT-3) mRNA levels in the developing rat hippocampus. J Neurosci. 1993 Sep;13(9):3818–3826. doi: 10.1523/JNEUROSCI.13-09-03818.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]