Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Sep;82(18):6340–6343. doi: 10.1073/pnas.82.18.6340

Angiotensin II receptor binding sites in brain microvessels.

R C Speth, S I Harik
PMCID: PMC391049  PMID: 2994072

Abstract

We assessed the specific binding of 125I-labeled angiotensin II (125I-Ang II) to particulate fractions of the cerebral cortex and cerebellum and to microvessels obtained by bulk isolation from these two brain regions in the dog. 125I-Ang II binds to cerebral and cerebellar microvessels in a specific, saturable, and reversible manner and with high affinity (dissociation constant about 1 nM). Maximal binding of 125I-Ang II to brain microvessels was about 2-fold higher than the maximal binding to particulate fractions of the cerebellum and more than 15-fold higher than that of the cerebral cortex. No significant differences were noted between cerebral and cerebellar microvessels in their specific binding of Ang II. Furthermore, our finding that analogues of Ang II displace specific 125I-Ang II binding to brain microvessels in a rank order that correlates with their pharmacological activities confers biological relevance on the ligand-binding studies. These results strongly suggest that specific Ang II receptor binding sites are present in brain microvessels. Such Ang II receptors may have an important role in regulating the microcirculation of the brain.

Full text

PDF
6340

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett J. P., Jr, Snyder S. H. Angiotensin II binding to mammalian brain membranes. J Biol Chem. 1976 Dec 10;251(23):7423–7430. [PubMed] [Google Scholar]
  2. Bolton J. E., Munday K. A., Parsons B. J., York B. G. Effects of angiotensin II on fluid transport, transmural potential difference and blood flow by rat jejunum in vivo. J Physiol. 1975 Dec;253(2):411–428. doi: 10.1113/jphysiol.1975.sp011197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brecher P., Tercyak A., Gavras H., Chobanian A. V. Peptidyl dipeptidase in rabbit brain microvessels. Biochim Biophys Acta. 1978 Oct 12;526(2):537–546. doi: 10.1016/0005-2744(78)90144-4. [DOI] [PubMed] [Google Scholar]
  4. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  5. Crane J. K., Campanile C. P., Garrison J. C. The hepatic angiotensin II receptor. II. Effect of guanine nucleotides and interaction with cyclic AMP production. J Biol Chem. 1982 May 10;257(9):4959–4965. [PubMed] [Google Scholar]
  6. Dick A. P., Harik S. I., Klip A., Walker D. M. Identification and characterization of the glucose transporter of the blood-brain barrier by cytochalasin B binding and immunological reactivity. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7233–7237. doi: 10.1073/pnas.81.22.7233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edvinsson L., Hardebo J. E., Owman C. Effects of angiotensin II on cerebral blood vessels. Acta Physiol Scand. 1979 Mar;105(3):381–383. doi: 10.1111/j.1748-1716.1979.tb06355.x. [DOI] [PubMed] [Google Scholar]
  8. Grubb R. L., Jr, Raichle M. E. Intraventricular angiotensin II increases brain vascular permeability. Brain Res. 1981 Apr 6;210(1-2):426–430. doi: 10.1016/0006-8993(81)90921-5. [DOI] [PubMed] [Google Scholar]
  9. Harik S. I., Doull G. H., Dick A. P. Specific ouabain binding to brain microvessels and choroid plexus. J Cereb Blood Flow Metab. 1985 Mar;5(1):156–160. doi: 10.1038/jcbfm.1985.20. [DOI] [PubMed] [Google Scholar]
  10. Harik S. I., Sharma V. K., Wetherbee J. R., Warren R. H., Banerjee S. P. Adrenergic and cholinergic receptors of cerebral microvessels. J Cereb Blood Flow Metab. 1981;1(3):329–338. doi: 10.1038/jcbfm.1981.36. [DOI] [PubMed] [Google Scholar]
  11. Herbst T. J., Raichle M. E., Ferrendelli J. A. beta-Adrenergic regulation of adenosine 3',5'-monophosphate concentration in brain microvessels. Science. 1979 Apr 20;204(4390):330–332. doi: 10.1126/science.34879. [DOI] [PubMed] [Google Scholar]
  12. Huang M., Rorstad O. P. Effects of vasoactive intestinal polypeptide, monoamines, prostaglandins, and 2-chloroadenosine on adenylate cyclase in rat cerebral microvessels. J Neurochem. 1983 Mar;40(3):719–726. doi: 10.1111/j.1471-4159.1983.tb08038.x. [DOI] [PubMed] [Google Scholar]
  13. Jard S., Cantau B., Jakobs K. H. Angiotensin II and alpha-adrenergic agonists inhibit rat liver adenylate cyclase. J Biol Chem. 1981 Mar 25;256(6):2603–2606. [PubMed] [Google Scholar]
  14. LARAGH J. H., ANGERS M., KELLY W. G., LIEBERMAN S. Hypotensive agents and pressor substances. The effect of epinephrine, norepinephrine, angiotensin II, and others on the secretory rate of aldosterone in man. JAMA. 1960 Sep 17;174:234–240. doi: 10.1001/jama.1960.03030030014003. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Phillips M. I., Weyhenmeyer J., Felix D., Ganten D., Hoffman W. E. Evidence for an endogenous brain renin-angiotensin system. Fed Proc. 1979 Aug;38(9):2260–2266. [PubMed] [Google Scholar]
  17. Robertson A. L., Khairallah P. A. Effects of angiotensin II and some analogues on vascular permeability in the rabbit. Circ Res. 1972 Dec;31(6):923–931. doi: 10.1161/01.res.31.6.923. [DOI] [PubMed] [Google Scholar]
  18. Smith J. B., Smith L., Brown E. R., Barnes D., Sabir M. A., Davis J. S., Farese R. V. Angiotensin II rapidly increases phosphatidate-phosphoinositide synthesis and phosphoinositide hydrolysis and mobilizes intracellular calcium in cultured arterial muscle cells. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7812–7816. doi: 10.1073/pnas.81.24.7812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Speth R. C., Husain A. Preparation and one-step purification of mono-125I-angiotensin II for radioligand binding assays. J Pharmacol Methods. 1984 Apr;11(2):137–150. doi: 10.1016/0160-5402(84)90023-8. [DOI] [PubMed] [Google Scholar]
  20. Speth R. C., Vallotton M. B., Wamsley J. K., Khosla M. C., Chernicky C. L., Bumpus F. M., Ferrario C. M. Localization of angiotensin receptors in the canine CNS. Clin Exp Hypertens A. 1984;6(10-11):1749–1753. doi: 10.3109/10641968409046071. [DOI] [PubMed] [Google Scholar]
  21. Speth R. C., Wamsley J. K., Gehlert D. R., Chernicky C. L., Barnes K. L., Ferrario C. M. Angiotensin II receptor localization in the canine CNS. Brain Res. 1985 Feb 4;326(1):137–143. doi: 10.1016/0006-8993(85)91392-7. [DOI] [PubMed] [Google Scholar]
  22. Wei E. P., Kontos H. A., Patterson J. L., Jr Vasoconstrictor effect of angiotensin on pial arteries. Stroke. 1978 Sep-Oct;9(5):487–489. doi: 10.1161/01.str.9.5.487. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES