Abstract
Four highly purified synthetic peptides encompassing segments of the 68-86 region [for the numbering system used, see Eylar, E.H., Brostoff, S., Hashim, G., Caccam, J. & Burnett, P. (1971) J. Biol. Chem. 246, 5770-5784] of myelin basic protein (MBP), a region known to induce experimental allergic encephalomyelitis (EAE) in Lewis rats, were used to define and compare structure-function relationships between the primary structure of the 68-86 sequence and the three following biological activities: induction of EAE in Lewis rats, stimulation of T lymphocytes in vitro as measured by augmented cellular transfer of EAE to syngeneic recipients, and lymphocyte proliferation, as measured by [3]thymidine incorporation. Guinea pig (GP) MBP was approximately 60 or 1500 times more active than the GP68-84 (Y G S L P Q K S Q R S Q D E N; single-letter amino acid abbreviations) or the modified bovine (MB) 68-84 (Y G S L P Q K A Q R P Q D E N) peptides for induction of EAE, respectively. Furthermore, lymphocytes primed with either GPMBP, GP68-84, or MB68-84 crossreacted in vitro with either GPMBP, GP68-84, or MB68-84 for activation of lymphocyte transfer activity. In contrast, lymphocytes primed with either GP68-84 or MB68-84 exhibited antigen-specific proliferation in vitro exclusively in response to either GP or MB sequences, respectively. Neither GP75-84 (S Q R S Q D E N) nor GP75-86 (S Q R S Q D E N P V) induced EAE, activated lymphocytes for EAE transfer, or stimulated lymphocyte proliferation under conditions and doses tested. We conclude that (i) structurally distinct determinants, reflecting existence of functionally independent classes of antigen receptors, specify encephalitogenic and proliferative responses of primed lymphocytes and (ii) determinants for EAE induction, cellular transfer of EAE, and lymphocyte proliferation include amino acid residues in the 68-74 (Y G S L P Q K) sequence of GPMBP.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brostoff S. W., Reuter W., Hichens M., Eylar E. H. Specific cleavage of the A1 protein from myelin with cathepsin D. J Biol Chem. 1974 Jan 25;249(2):559–567. [PubMed] [Google Scholar]
- Carbone A. M., Ovadia H., Paterson P. Y. Role of macrophage-myelin basic protein interaction in the induction of experimental allergic encephalomyelitis in Lewis rats. J Immunol. 1983 Sep;131(3):1263–1267. [PubMed] [Google Scholar]
- Chou C. H., Chou F. C., Kowalski T. J., Shapira R., Kibler R. F. The major site of guinea-pig myelin basic protein encephalitogenic in Lewis rats. J Neurochem. 1977 Jan;28(1):115–119. doi: 10.1111/j.1471-4159.1977.tb07716.x. [DOI] [PubMed] [Google Scholar]
- Chou C. H., Fritz R. B., Chou F. C., Kibler R. F. The immune response of Lewis rats to peptide 68-88 of guinea pig myelin basic protein. I. T cell determinants. J Immunol. 1979 Oct;123(4):1540–1543. [PubMed] [Google Scholar]
- Eylar E. H., Brostoff S., Hashim G., Caccam J., Burnett P. Basic A1 protein of the myelin membrane. The complete amino acid sequence. J Biol Chem. 1971 Sep 25;246(18):5770–5784. [PubMed] [Google Scholar]
- Hashim G. A., Carvalho E. F., Sharpe R. D. Definition and synthesis of the essential amino acid sequence for experimental allergic encephalomyelitis in Lewis rats. J Immunol. 1978 Aug;121(2):665–670. [PubMed] [Google Scholar]
- Hashim G. A. Experimental allergic encephalomyelitis in Lewis rats: chemical synthesis of disease-inducing determinant. Science. 1977 Jun 10;196(4295):1219–1221. doi: 10.1126/science.67639. [DOI] [PubMed] [Google Scholar]
- Hashim G. A. Myelin basic protein: structure, function and antigenic determinants. Immunol Rev. 1978;39:60–107. doi: 10.1111/j.1600-065x.1978.tb00397.x. [DOI] [PubMed] [Google Scholar]
- Hashim G. A., Sharpe R. D., Carvalho E. F. Experimental allergic encephalomyelitis: sequestered encephalitogenic determinant in the bovine myelin basic protein. J Neurochem. 1979 Jan;32(1):73–77. doi: 10.1111/j.1471-4159.1979.tb04511.x. [DOI] [PubMed] [Google Scholar]
- Kardys E., Hashim G. A. Experimental allergic encephalomyelitis in Lewis rats: immunoregulation of disease by a single amino acid substitution in the disease-inducing determinant. J Immunol. 1981 Sep;127(3):862–866. [PubMed] [Google Scholar]
- Kibler R. F., Fritz R. B., Chou F., Jen Chou C-H, Peacocke N. Y., Brown N. M., McFarlin D. E. Immune response of Lewis rats to peptide C1 (residues 68-88) of guinea pig and rat myelin basic proteins. J Exp Med. 1977 Nov 1;146(5):1323–1331. doi: 10.1084/jem.146.5.1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McFarlin D. E., Blank S. E., Kibler R. F., McKneally S., Shapira R. Experimental allergic encephalomyelitis in the rat: response to encephalitogenic proteins and peptides. Science. 1973 Feb 2;179(4072):478–480. doi: 10.1126/science.179.4072.478. [DOI] [PubMed] [Google Scholar]
- PATERSON P. Y. Transfer of allergic encephalomyelitis in rats by means of lymph node cells. J Exp Med. 1960 Jan 1;111:119–136. doi: 10.1084/jem.111.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Panitch H. S. Adoptive transfer of experimental allergic encephalomyelitis with activated spleen cells: comparison of in vitro activation by concanavalin a and myelin basic protein. Cell Immunol. 1980 Nov;56(1):163–171. doi: 10.1016/0008-8749(80)90091-x. [DOI] [PubMed] [Google Scholar]
- Panitch H. S., McFarlin D. E. Experimental allergic encephalomyelitis: enhancement of cell-mediated transfer by concanavalin A. J Immunol. 1977 Sep;119(3):1134–1137. [PubMed] [Google Scholar]
- Paterson P. Y., Day E. D. Current perspectives of neuroimmunologic disease: multiple sclerosis and experimental allergic encephalomyelitis (1,2). Clin Immunol Rev. 1981;1(4):581–697. [PubMed] [Google Scholar]
- Paterson P. Y. Experimental allergic encephalomyelitis and autoimmune disease. Adv Immunol. 1966;5:131–208. doi: 10.1016/s0065-2776(08)60273-4. [DOI] [PubMed] [Google Scholar]
- Paterson P. Y. Molecular and cellular determinants of neuroimmunologic inflammatory disease. Fed Proc. 1982 Jul;41(9):2569–2576. [PubMed] [Google Scholar]
- Richert J. R., Driscoll B. F., Kies M. W., Alvord E. C., Jr Adoptive transfer of experimental allergic encephalomyelitis: incubation of rat spleen cells with specific antigen. J Immunol. 1979 Feb;122(2):494–496. [PubMed] [Google Scholar]
- Richert J. R., Driscoll B. F., Kies M. W., Alvord E. C., Jr Experimental allergic encephalomyelitis: activation of myelin basic protein-sensitized spleen cells by specific antigen in culture. Cell Immunol. 1981 Mar 15;59(1):42–53. doi: 10.1016/0008-8749(81)90432-9. [DOI] [PubMed] [Google Scholar]
- Spitler L. E., Von Muller C. M., Fudenberg H. H., Eylar E. H. Experimental allergic encephalitis. Dissociation of cellular immunity to brain protein and disease production. J Exp Med. 1972 Jul 1;136(1):156–174. doi: 10.1084/jem.136.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spitler L. E., von Muller C. M., Young J. D. Experimental allergic encephalitis: study of cellular immunity to the encephalitogenic determinant. Cell Immunol. 1975 Jan;15(1):143–151. doi: 10.1016/0008-8749(75)90171-9. [DOI] [PubMed] [Google Scholar]
- Stetler-Stevenson M. A., Yang D. C., Lipkowski A., McCartney L., Peterson D., Flouret G. An approach to the elucidation of metabolic breakdown products of the luteinizing hormone-releasing hormone. J Med Chem. 1981 Jun;24(6):688–692. doi: 10.1021/jm00138a009. [DOI] [PubMed] [Google Scholar]
- Swanborg R. H., Swierkosz J. E., Saieg R. G. Studies on the species-variability of experimental allergic encephalomyelitis in guinea pigs and rats. J Immunol. 1974 Feb;112(2):594–600. [PubMed] [Google Scholar]