Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Aug;82(16):5550–5554. doi: 10.1073/pnas.82.16.5550

Mass distribution of a probable tail-length-determining protein in bacteriophage T4.

R L Duda, J S Wall, J F Hainfeld, R M Sweet, F A Eiserling
PMCID: PMC391160  PMID: 3161081

Abstract

Analysis of dark-field scanning transmission electron micrographs of unstained freeze-dried specimens established that the interior of the intact bacteriophage T4 tail tube contains extra density that is missing in tubes artificially emptied by treatment with 3 M guanidine hydrochloride. The mass of the tail tube is 3.1 X 10(6) daltons, and the central channel is 3.2 nm in diameter. Quantitative analysis of the density data is consistent with the presence of up to six strands of a protein molecule in the central channel that could serve as the template or ruler structure that determines the length of the bacteriophage tail and that could be injected into the cell with the phage DNA.

Full text

PDF
5550

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CASPAR D. L. The structural stability of tocacco mosaic virus. Trans N Y Acad Sci. 1960 May;22:519–521. doi: 10.1111/j.2164-0947.1960.tb00721.x. [DOI] [PubMed] [Google Scholar]
  2. Caspar D. L. Movement and self-control in protein assemblies. Quasi-equivalence revisited. Biophys J. 1980 Oct;32(1):103–138. doi: 10.1016/S0006-3495(80)84929-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Duda R. L., Eiserling F. A. Evidence for an internal component of the bacteriophage T4D tail core: a possible length-determining template. J Virol. 1982 Aug;43(2):714–720. doi: 10.1128/jvi.43.2.714-720.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Griffith J., Kornberg A. Mini M13 bacteriophage: circular fragments of M13 DNA are replicated and packaged during normal infections. Virology. 1974 May;59(1):139–152. doi: 10.1016/0042-6822(74)90211-6. [DOI] [PubMed] [Google Scholar]
  5. Hainfeld J. F., Wall J. S., Desmond E. J. A small computer system for micrograph analysis. Ultramicroscopy. 1982;8(3):263–270. doi: 10.1016/0304-3991(82)90242-x. [DOI] [PubMed] [Google Scholar]
  6. Katsura I., Hendrix R. W. Length determination in bacteriophage lambda tails. Cell. 1984 Dec;39(3 Pt 2):691–698. doi: 10.1016/0092-8674(84)90476-8. [DOI] [PubMed] [Google Scholar]
  7. Kellenberger E. Assembly in biological systems. Ciba Found Symp. 1972;7:189–206. doi: 10.1002/9780470719909.ch11. [DOI] [PubMed] [Google Scholar]
  8. Moody M. F., Makowski L. X-ray diffraction study of tail-tubes from bacteriophage T2L. J Mol Biol. 1981 Aug 5;150(2):217–244. doi: 10.1016/0022-2836(81)90450-2. [DOI] [PubMed] [Google Scholar]
  9. Simon L. D., Anderson T. F. The infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope. I. Attachment and penetration. Virology. 1967 Jun;32(2):279–297. doi: 10.1016/0042-6822(67)90277-2. [DOI] [PubMed] [Google Scholar]
  10. Simon L. D., Anderson T. F. The infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope. II. Structure and function of the baseplate. Virology. 1967 Jun;32(2):298–305. doi: 10.1016/0042-6822(67)90278-4. [DOI] [PubMed] [Google Scholar]
  11. Steven A. C., Hainfeld J. F., Trus B. L., Steinert P. M., Wall J. S. Radial distributions of density within macromolecular complexes determined from dark-field electron micrographs. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6363–6367. doi: 10.1073/pnas.81.20.6363. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES