Skip to main content
Elsevier Sponsored Documents logoLink to Elsevier Sponsored Documents
. 2013 Dec;69(3):740–763. doi: 10.1016/j.ympev.2013.07.002

Molecular phylogenetics of New Caledonian Diospyros (Ebenaceae) using plastid and nuclear markers

Barbara Turner a,, Jérôme Munzinger b, Sutee Duangjai c, Eva M Temsch a, Reinhold Stockenhuber d, Michael HJ Barfuss a, Mark W Chase e,f, Rosabelle Samuel a
PMCID: PMC3913082  PMID: 23850609

graphic file with name fx1.jpg

Keywords: Endemism, Genome size, Island flora, Low-copy nuclear markers, Molecular dating

Highlights

  • Analyses showed resolution among 1/3 of the Diospyros species form NC clade III.

  • Some morphological distinct species could not be discriminated with the markers used.

  • Diospyros arrived relative recently (5–20 mya) in New Caledonia.

  • Chromosome counts confirmed the investigated species to be diploid.

  • Genome sizes varied nearly fourfold among species examined.

Abstract

To clarify phylogenetic relationships among New Caledonian species of Diospyros, sequences of four plastid markers (atpB, rbcL, trnKmatK and trnStrnG) and two low-copy nuclear markers (ncpGS and PHYA) were analysed. New Caledonian Diospyros species fall into three clades, two of which have only a few members (1 or 5 species); the third has 21 closely related species for which relationships among species have been mostly unresolved in a previous study. Although species of the third group (NC clade III) are morphologically distinct and largely occupy different habitats, they exhibit little molecular variability. Diospyros vieillardii is sister to the rest of the NC clade III, followed by D. umbrosa and D. flavocarpa, which are sister to the rest of this clade. Species from coastal habitats of western Grande Terre (D. cherrieri and D. veillonii) and some found on coralline substrates (D. calciphila and D. inexplorata) form two well-supported subgroups. The species of NC clade III have significantly larger genomes than found in diploid species of Diospyros from other parts of the world, but they all appear to be diploids. By applying a molecular clock, we infer that the ancestor of the NC clade III arrived in New Caledonia around 9 million years ago. The oldest species are around 7 million years old and the youngest ones probably much less than 1 million years.

1. Introduction

New Caledonia is an island group located in the southwestern Pacific about 1300 km east of Australia, ranging from around 19° to 23° south with an land area of ca. 19,000 km2. It consists of the main island Grande Terre (ca. 16,000 km2), Iles Belep (in the north), Ile des Pins (in the south), Loyalty Islands (in the east) and several other smaller islands. The continental part of New Caledonia (mainly Grande Terre) separated from Gondwanan during late Cretaceous (ca. 80 million years ago, mya; McLoughlin, 2001). During the Palaeocene to late Eocene, this continental sliver was submerged for at least 20 million years (myr), and a thick layer of oceanic mantle accumulated (Pelletier, 2006). After Grande Terre re-emerged in the late Eocene (37 mya), this heavy-metal rich oceanic material covered most of the land. Today, around 1/3 of the main island is still covered with ultramafic substrates. Because Grande Terre was totally submerged, it is highly unlikely that lineages that were already present in this area before the split from Gondwanan could have survived locally. Current hypotheses suggest that biota present today are derived from elements/ancestors that reached New Caledonia via long distance dispersal (e.g. Morat et al., 2012; Pillon, 2012; Grandcolas et al., 2008) mainly from Australia, New Guinea and Malaysia. Hypotheses of other islands between Australia and New Caledonia having served as stepping stones or refuges for Gondwanan taxa now endemic (e.g. Amborella) have been proposed by a few authors (Ladiges and Cantrill, 2007), but there is no consensus of when they existed or how large and numerous they might have been. The New Caledonian climate is tropical to subtropical. The main island is split by a mountain range into a humid eastern portion (2000–4000 mm precipitation per year) and a dry western part (1000 mm precipitation per year) with prevailing winds and rain coming from the south east. New Caledonia is one of the 34 biodiversity hotspots (Mittermeier et al., 2004; Myers et al., 2000), and nearly 75% of the native flora is endemic (Morat et al., 2012), which is the fourth highest for an island (Lowry, 1998). Among these endemic taxa are 98 genera and three families, Amborellaceae, Oncothecaceae and Phellinaceae (Morat et al., 2012). One of the reasons hypothesised for the high level of endemism found in New Caledonia is the ultramafic substrates, which have acted as a filter for colonising species that were already pre-adapted to this special soil (Pillon et al., 2010).

Ebenaceae are pantropical and belong to the order Ericales (APG, 2009); the majority of species occur in Africa (incl. Madagascar) and the Indo-Pacific region. Duangjai et al. (2006) divided Ebenaceae into two sub families, Lissocarpoideae and Ebenoideae. Lissocarpoideae are monogeneric (Lissocarpa, 8 species in northwestern South America), and Ebenoideae include Diospyros, Euclea (18 species in Africa) and Royena (17 species in Africa). This classification of Ebenaceae in two subfamilies and four genera has been also supported by palynological data (Geeraerts et al., 2009).

In this paper, we use the circumscription of Diospyros as proposed by Duangjai et al. (2006). Diospyros is the largest genus of Ebenaceae with more than 500 species, making it also one of the largest angiosperm genera. The greatest species of diversity is in Asia and the Pacific region (∼300 species). Fruits of some species (persimmons; e.g. D. kaki, D. lotus and D. virginiana) are edible, and ebony wood (e.g. D. ebenum) is one of the most expensive timbers. Species of Diospyros are shrubs or trees that occur in most tropical and subtropical habitats, where they are often important and characteristic elements. Duangjai et al. (2009) found 11 mostly well-resolved clades within Diospyros. In New Caledonia, there are 31 described Diospyros species, of which all but one are endemic, and they belong to three clades (Duangjai et al., 2009; Fig. 4, clades II, III and XI). The first clade (clade II) contains five species from New Caledonia that are related to Australian species of Diospyros. The second clade (clade III) includes species from Hawai‘i, Indian Ocean islands and 24 taxa from New Caledonia, within which the species from New Caledonia form a sublcade, here termed NC clade III. Although Duangjai et al. (2009) analysed more than 8000 base pairs of plastid DNA, low variability and little resolution was found among these endemic New Caledonian species. The third clade (clade XI), consisting of taxa from Asia, America, Pacific Islands and New Caledonia, includes two Diospyros species from New Caledonia, one endemic and the other found throughout the southern Pacific. These two species are not sister species, accounting for two more colonisations of New Caledonia (i.e. four in total). Similar, multiple colonisation events are also found among other organisms in New Caledonia (e.g. Murienne et al., 2005). Diospyros is observed in all types of New Caledonian vegetation except mangrove; the species range from sea level up to ca. 1250 m (New Caledonia’s highest point is 1628 m). There are several micro-endemics restricted to just a small area (White, 1992). Most New Caledonian Diospyros species from clade III are morphologically clearly defined and restricted by edaphic factors and occur on just one substrate type. For example, D. labillardierei (Fig. 1D) is distinctive with its long narrow leaves and Salix-like habit; it is a rheophyte on non-ultramafic substrates. Diospyros veillonii (Fig. 1F) is a remarkable species with coralloid inflorescence axes (unique among New Caledonian Diospyros) and large leaves, but is known from only a single locality in dry forest on black clay soil. Other species have broader distributions and ecologies, such as D. parviflora (Fig. 1J), which grows on both ultramafic and non-ultramafic substrates and is widespread throughout Grande Terre and Balabio Island in dense humid forests as well as in more open and dry vegetation. Some species can have similar ecological requirements, but are morphologically well differentiated; for example D. vieillardii (Fig. 1A) has a calyx narrower than its prune-like fruit, whereas D. glans (Fig. 1N) has a thick calyx much wider than its fruit, but both grow in maquis vegetation and co-occur at some sites.

Fig. 4.

Fig. 4

One of 210 equally parsimonius trees of the plastid data set. Clades are named according to Duangjai et al. (2009). Bold branches have more than 70% support in all three analysis. New Caledonian taxa are coloured, red represents clade III NC.

Fig. 1.

Fig. 1

Examples of Diospyros species from New Caledonia (A–N) and Map of New Caledonia with collection points (O). A: D. vieillardii; B: D. umbrosa; C: D. flavocarpa, D: D. labillardierei; E: D. pancheri, F: D. veillonii; G: D. minimifolia; H: D. pustulata; I: D. cherrieri; J: D. parviflora; K: D.perplexa; L: D. yaouhensis; M: D. revolutissima; N: D. glans; O: Map of New Caledonia with sampling localities. Photographs taken by: C. Chambrey (I), V. Hequet (F, K, L), J. Munzinger (A, B, C, E, G, H, J, M, N) and B. Turner (D).

For establishing phylogenetic relationships, sequences of low-copy nuclear genes are not as often used as regions from the plastid genome, often due to methodological difficulties. Low-copy genes are present in one or few copies in the genome, and primers are often highly specific for individual groups, requiring them therefore to be newly designed for each study. On the other hand, low-copy nuclear markers are normally highly informative and as they are biparentally inherited they may also help detect recent hybridization (e.g. Moody and Rieseberg, 2012). However, in a study of Hawaiian endemics in two unrelated genera, Pillon et al. (2013) found that although two low-copy nuclear loci displayed a high level of variability, they also exhibited heterozygosity, intraspecific variation, and retention of ancient alleles; allele coalescence was older than the species under study. Nonetheless, we hoped that inclusion of low-copy nuclear genes might provide additional insight into species relationships and thus included two such loci. Phytochrome A (PHYA) belongs to the gene family of the phytochromes, which has eight members across the seed plants (PHYAPHYE in angiosperms and PHYNPHYP in gymnosperms); PHYN/PHYA, PHYO/PHYC and PHYP/PHYBDE are orthologs, the rest being paralogs of the others (Mathews et al., 2010). Genes of this family encode photoreceptor proteins that mediate developmental responses to red and far red light. The three main paralogs (PHYA, PHYB and PHYC) are different enough to be amplified with specific primers (Zimmer and Wen, 2012). Sequences of phy genes have been used successfully across the flowering plants (e.g. Mathews et al., 2010; Nie et al., 2008; Bennett and Mathews, 2006) for phylogenetic reconstruction. The gene PHYA used in this study consists of four exons and three introns. Glutamine synthetase (GS), codes for a protein involved in nitrogen assimilation. There are two main types of GS genes, cytosolic- and chloroplast-expressed. Chloroplast-expressed glutamine synthetase (ncpGS) consists of 12 exons and 11 introns and has been shown to be a single-copy gene in plants (Emshwiller and Doyle, 1999). This combination of coding and non-coding regions has been shown to be highly informative for inferring phylogenetic trees of various groups (e.g. Oxalidaceae, Emshwiller and Doyle, 1999; Passiflora, Yockteng and Nadot, 2004; Spiraeanthemum, Pillon et al., 2009a; Codia, Pillon et al., 2009b; Achillea millefolium, Guo et al., 2012).

Beside phylogenetic relationships, the age of clades is of interest. In many cases, there are no fossils available for direct dating of a group of interest in a particular region, which is often the case for islands and is certainly true for New Caledonia (the few fossils recorded to date are older than the last emergence of the island and are not certain to be angiosperms; Salard and Avias, 1968). Rates of DNA divergence are generally consistent with a molecular clock (Zuckerkandl and Pauling, 1965), and therefore DNA data contain information about the relative ages of taxa. When substitution rates (e.g. Silvestro et al., 2011; Alba et al., 2000) or fossils belonging to defined clades (e.g. Pirie and Doyle, 2012; Magallón, 2010) are taken into consideration, the relative ages obtained can be transformed into absolute ages. Placement of fossils in the correct position in the phylogenetic tree is crucial for accurate interpretation (Forest, 2009). Some previous studies have has been published on the subject of the age of asterids (e.g. Millán-Martínez, 2010; Bell et al., 2010; Bremer et al., 2004) to which Ericales belong, and fossil Diospyros are known from some localities (mainly in India and North America), but none has been found in New Caledonia. Austrodiospyros cryptostoma (Basinger and Christophel, 1985), a fossil from Australia has many morphological similarities to D. australis of clade II (Duangjai et al., 2009). It is thus far the only fossil belonging to a clade that includes Diospyros species from New Caledonia. We treat A. cryptostoma as member of clade II in this study.

Genome sizes vary nearly 2400-fold across angiosperms (Pellicer et al., 2010). Most variation in DNA amount is caused by different amounts of non-coding, repetitive DNA, such as pseudogenes, retrotransposons, transposons and satellite repeats (Leitch, 2007; Bennett and Leitch, 2005; Parisod et al., 2009; Petrov, 2001). Genome sizes and chromosome numbers of Diospyros are within the range of those of other members of Ericales (Bennett and Leitch, 2010). Nuclear DNA amounts in Diospyros range from 0.78 pg (1C-value) in diploid D. rhodocalyx up to 4.06 pg in nonaploid D. kaki cultivars (Tamura et al., 1998). The basic chromosome number in Diospyros is 2= 2= 30, and most species seem to be diploid (e.g. Tamura et al., 1998; White, 1992). There are some reports of polyploid Diospyros, mostly from cultivated species (e.g. D. rhombifolia 4x, D. ebenum 6x, D. kaki 6x and 9x, D. virginiana 6x and 9x; Tamura et al., 1998). White (1992) provided chromosome counts for nine New Caledonian species of Diospyros (D. calciphila, D. fasciculosa, D. flavocarpa, D. minimifolia, D. olen, D. parviflora, D. umbrosa, D. vieillardii and D. yaouhensis), all of which are diploid.

Duangjai et al. (2009) found little sequence variation in the markers investigated among many species from NC clade III, which could indicate recent diversification. White (1992), who described most the New Caledonian Diospyros species, suspected some hybridization was taking place. The main aim of this study was to clarify relationships among New Caledonian Diospyros species, especially of those belonging to clade III (Duangjai et al., 2009). Furthermore, if we were able to find more variable than those previously studied, we wanted to elucidate potential factors underlying speciation (e.g. ecological speciation, hybrid speciation and introgression) and understand better differences in speciation rates of the clades that reached New Caledonia independently. We used low-copy nuclear markers, PHYA and ncpGS because they offered the prospect of resolving relationships within this clade and detecting possible hybrid species. We also included samples from nine additional species that were not available for the study of Duangjai et al. (2009). Moreover, we conducted dating analyses to obtain estimates of the ages for the lineages to which New Caledonian Diospyros species belong. We also present chromosome numbers and genome sizes of some additional New Caledonian species of Diospyros; we wished to examine further the hypothesis that polyploidy (perhaps involving hybridization) might have played a role in producing diversity in this comparatively species-rich clade.

2. Materials and methods

2.1. Material

Material from New Caledonian Diospyros species was collected by B. Turner (BT), J. Munzinger (JM), Yohan Pillon (YP) or Vanessa Hequet (VH). When fertile, a voucher was made with several duplicates sent to various herbaria. When sterile, one voucher per population was taken; this was compared to already existing collections in Noumea Herbarium (NOU) from the same location and referred to that species if similar. One putatively new species was detected while doing fieldwork for this project, here called D. sp. Pic N’ga. Other Ebenaceae samples are from previous studies (Duangjai et al., 2009). Outgroup taxa and a few Diospyros samples were taken from the Royal Botanic Gardens, Kew, DNA Bank (http://apps.kew.org/dnabank/homepage.html). Compared to the sampling of Duangjai et al. (2009), we added material of the following New Caledonian species: D. erudita, D. glans, D. impolita, D. inexplorata, D. margaretae, D. tireliae, D. tridentata, D. trisulca and D. veillonii (for details see Table 1). The three un-sampled species from New Caledonia (D. fastidiosa, D. nebulosa and D. neglecta) are rare and have not been seen after their description.

Table 1.

Table of accessions; showing all individuals used in this study. Sequences provided by S. Duangjai are indicated.

Taxon Acc.-nr. Origin Voucher Herbarium atpB rbcL matK & trnK intron trnStrnG ncpGS PHYA
D. abyssinica (Hiern) F. White K1672 Africa Gilbert & Sebseke 8803 K DQ923883 EU980646 DQ923990 EU981061
D. affinis Thwaites DY03 Sri Lanka Yakandawala 03 PDA Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291310
D. affinis DY05 Sri Lanka Yakandawala 05 PDA Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291311
D. affinis DY18 Sri Lanka Yakandawala 18 PDA Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291312
D. affinis Eb179 Sri Lanka Samuel s.n. PDA Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291313
D. affinis Eb180 Sri Lanka Samuel s.n. PDA Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291314
D. cf. affinis S09 Sri Lanka Samuel 09 PDA Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291315
D. andamanica (Kurz) Bakh. Eb002 Thailand Duangjai 068 KUFF, W DQ923884 EU980645 DQ923991 EU981060 KF291447 KF291624
D. andamanica Eb104 Thailand Duangjai 162 KUFF, W DQ923950 EU980755 DQ924057 EU981170 KF291448 KF291625
D. anisandra S.F. Blake W68 Guatemala Wallnöfer 6012 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291316
D. anisandra W80 Guatemala Frisch 2006-1 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291317
D. apiculata Hiern Eb006 Thailand Duangjai 072 KUFF EU980813 EU980647 EU980936 EU981062 KF291449 KF291626
D. areolata King & Gamble Eb160 Brunei Duangjai et al. 33 BRUN, W, WU Duangjai unpubl Duangjai unpubl Duangjai unpubl KF291318 KF291450 KF291627
D. artanthifolia Mart. ex Miq. W15 Peru Pirie 62 W DQ923885 EU980648 DQ923992 EU981063
D. australis (R.Br) Hiern Eb205 Australia Wallnöfer & Duangjai 13944 WU DQ923887 EU980650 DQ923994 EU981065
D. australis K22548 Australia Forster 7848 K DQ923886 EU980649 DQ923993 EU981064
D. balansae Guillaumin M3556 New Caledonia Munzinger 3556 NOU015466 EU980814 EU980651 EU980937 EU981066 KF291451 KF291628
D. batocana Hiern K21210 Namibia Steyl 88 K Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291319
D. batocana K22553 Zambia Pope et al. 2196 K Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291320
D. bejaudii Lecomte Eb011 Thailand Duangjai 075 KUFF, W DQ923888 EU980652 DQ923995 EU981067 KF291452 KF291629
D. bipindensis Gürke K22452 Gabon Stone & Niangadouma 3554 MO DQ923889 EU980653 DQ923996 EU981068
D. borbonica I. Richardson K23682 Reunion Chase REU10042 REU, WU EU980815 EU980654 EU980938 EU981069 KF291453 KF291630
D. borneensis Hiern Eb015 Thailand Duangjai 079 KUFF, W DQ923890 EU980655 DQ923997 EU981070 KF291454 KF291631
D. bourdillonii Brandis W82 India DeFranceschi 18.12.2006 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291321
D. brandisiana Kurz Eb017 Thailand Duangjai & Sinbumrung 007 KUFF, W DQ923891 EU980656 DQ923998 EU981071 KF291455 KF291632
D. brassica F. White M2898 New Caledonia Munzinger 2898 NOU007949 DQ923892 EU980657 DQ923999 EU981072 KF291456 KF291633
D. buxifolia (Blume) Hiern Eb018 Thailand Duangjai 081 KUFF, W EU980816 EU980658 EU980939 EU981073
D. buxifolia W85 India DeFranceschi 18.12.2006 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291322
D. calciphila F. White BT314 New Caledonia Munziner et al. 6650 MPU, NOU, P KF291801 KF291860 KF291919 KF291323 KF291457 KF291634
D. calciphila BT316 New Caledonia Munziner et al. 6650 MPU, NOU, P KF291802 KF291861 KF291920 KF291324 KF291458 KF291635
D. calciphila BT317 New Caledonia Munziner et al. 6653 MPU, NOU, P KF291459 KF291636
D. calciphila YP124 New Caledonia Pillon 124 NOU006325 KF291460 KF291637
D. capreifolia Mart. ex Hiern W09 French Guiana Prévost & Sabatier 3476 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291325
D. carbonaria Benoist W10 French Guiana Prévost & Sabatier 3470 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291326
D. caribaea (A.DC.) Standl. W65 Cuba Abbott 19004 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291327
D. castanea (Craib) Fletcher Eb020 Thailand Duangjai 083 KUFF, W DQ923893 EU980660 DQ924000 EU981075
D. cauliflora Blume Eb024 Thailand Duangjai 087 KUFF, W DQ923894 EU980661 DQ924001 EU981076 KF291461 KF291638
D. cavalcantei Sothers W22 French Guiana Prévost et al. 4671 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291328
D. cayennensis A.DC. W03 French Guiana Prévost 3430 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291329
D. celebica Bakh. K1242 Indonesia Chase 1242 K DQ923897 EU980664 DQ924004 EU981079
D. cherrieri F. White BT262 New Caledonia Chambrey & Turner 16 NOU079551, WU062860 KF291803 KF291862 KF291921 KF291330 KF291463 KF291640
D. cherrieri BT297 New Caledonia Chambrey & Turner 17 NOU079547 KF291804 KF291863 KF291922 KF291331 KF291464 KF291641
D. cherrieri VH3510 New Caledonia Hequet 3510 NOU015245 EU980818 EU980665 EU980941 EU981080 KF291465 KF291642
D. cherrieri VH3516 New Caledonia Hequet 3516 NOU015251 EU980819 EU980666 EU980942 EU981081 KF291466 KF291643
D. cherrieri VH3610 New Caledonia Hequet 3610 NOU016962 KF291467 KF291644
D. cherrieri VH3640 New Caledonia Hequet 3640 NOU017014 KF291468 KF291645
D. chrysophyllos Poir. K25758 Mauritius Page 45 MAU Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291332
D. chrysophyllos K25769 Mauritius Page 71 MAU Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291333
D. clementium Bakh. Eb154 Brunei Duangjai et al. 24 BRUN, W, WU Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291334
D. confertiflora (Hiern) Bakh. Eb028 Thailand Duangjai 091 KUFF, W DQ923898 EU980667 DQ924005 EU981082
D. consolatae Chiov. K1673 Africa Beentje 2168 K DQ923899 EU980668 DQ924006 EU981083
D. cooperi (Hutchinson & Dalziel) F. White K20604 Ghana Merello et al. 1350 MO DQ923900 EU980669 DQ924007 EU981084
D. crassinervis (Krug & Urb.) Standl. W23 Cuba Rainer s.n. W DQ923901 EU980670 DQ924008 EU981085
D. curranii Merr. Eb031 Thailand Duangjai 094 KUFF, W, WU DQ923902 EU980671 DQ924009 EU981086 KF291469 KF291646
D. dasyphylla Kurz Eb033 Thailand Duangjai 096 KUFF, W DQ923903 EU980672 DQ924010 EU981087
D. defectrix Fletcher Eb097 Thailand Duangjai 155 KUFF, WU KF291805 KF291864 KF291923 KF291335 KF291470 KF291647
D. dendo Welw. ex Hiern K21197 Central African Republic Harris & Fay 1594 K Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291336
D. dichroa Sandwith W13 French Guiana Sabatier et al. 4457 W DQ923904 EU980673 DQ924011 EU981088
D. dictyoneura Hiern Eb038 Thailand Duangjai 100 KUFF, W EU980674 EU980820 EU980943 EU981089 KF291471 KF291648
D. diepenhorstii Miq. Eb042 Thailand Duangjai 103 KUFF, W DQ923905 EU980675 DQ924012 EU981090 KF291472 KF291649
D. discolor Willd. Eb088 Thailand Duangjai 146 KUFF, WU Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291337 KF291473 KF291650
D. ebenum J. Koenig ex Retz DY06 Sri Lanka Yakandawala 06 PDA Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291338
D. ebenum DY08 Sri Lanka Yakandawala 08 PDA Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291339
D. ebenum Eb174 Sri Lanka Samuel s.n. WU EU980677 EU980821 EU980944 EU981092
D. ebenum W83 India Ramesh Diosass-2 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291340
D. ebenum W84 India DeFranceschi 21.12.2006 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291341
D. egrettarum I. Richardson K25788 Mauritius Page 122 MAU Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291342
D. ehretioides Wall. ex G. Don Eb043 Thailand Duangjai 104 KUFF, W DQ923907 EU980678 DQ924014 EU981093 KF291474 KF291651
D. eriantha Charmp. ex Benth W63 Taiwan Chung & Anderberg 1401 HAST Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291343
D. erudita F. White BT287 New Caledonia Chambrey & Turner 20 NOU KF291806 KF291865 KF291924 KF291344 KF291475 KF291652
D. erudita M2359 New Caledonia Munzinger et al. 2359 NOU003840 EU980845 EU980739 EU980968 EU981154 KF291476 KF291653
D. erudita/pustulata M3010 New Caledonia Munziner et al. 3010 NOU008358 EU980841 EU980735 EU980964 EU981150
D. fasciculosa (F. Muell.) F. Muell. BT014 New Caledonia Munzinger et al. 6617 NOU KF291477 KF291654
D. fasciculosa BT142 New Caledonia MacKee 27341 NOU022840 KF291478 KF291655
D. fasciculosa BT165 New Caledonia KF291479 KF291656
D. fasciculosa BT166 New Caledonia KF291480 KF291657
D. fasciculosa BT335 New Caledonia KF291481 KF291658
D. fasciculosa M2127 New Caledonia Munzinger 2127 NOU003604 DQ923908 EU980679 DQ924015 EU981094 KF291482 KF291659
D. fasciculosa YP243 New Caledonia Pillon et al. 243 NOU010096 EU980822 EU980680 EU980945 EU981095 KF291483 KF291660
D. ferox Bakh. Eb146 Brunei Duangjai et al. 012 BRUN, W, WU DQ923909 EU980681 DQ924016 EU981096 KF291484 KF291661
D. ferruginescens Bakh. Eb143 Brunei Duangjai et al. 007 BRUN, W, WU DQ923911 EU980685 DQ924018 EU981100
D. filipendula Pierre ex Lecomte Eb048 Thailand Duangjai 109 KUFF DQ923912 EU980686 DQ924019 EU981101 KF291485 KF291662
D. flavocarpa (Vieill. ex P. Parm.) F. White BT126 New Caledonia Munzinger et al. 6625 NOU KF291807 KF291866 KF291925 KF291345 KF291486 KF291663
D. flavocarpa BT127 New Caledonia Munzinger et al. 6625 NOU KF291808 KF291867 KF291926 KF291346 KF291487 KF291664
D. flavocarpa BT156 New Caledonia Munzinger et al. 6632 NOU KF291488 KF291665
D. flavocarpa K20607 New Caledonia McPherson & Lowry 18563 NOU022877 DQ923913 EU980687 DQ924020 EU981102 KF291489 KF291666
D. flavocarpa K20614 New Caledonia Lowry et al. 5783 NOU023319 EU980870 EU980782 EU980993 EU981197
D. flavocarpa M2235 New Caledonia Munzinger 2235 NOU006659 EU980825 EU980688 EU980948 EU981103 KF291490 KF291667
D. flavocarpa M2905 New Caledonia Munzinger et al. 2905 NOU007977 EU980826 EU980689 EU980949 EU981104
D. fragrans Gürke K22454 Gabon SIMAB 010610 MO DQ923914 EU980690 DQ924021 EU981105
D. frutescens Blume Eb049 Thailand Duangjai 110 KUFF, W EU980827 EU980691 EU980950 EU981106
D. fulvopilosa Fletcher Eb052 Thailand Duangjai 113 KUFF, W DQ923915 EU980692 DQ924022 EU981107 KF291491 KF291668
D. fuscovelutina Baker RF938 Madagascar RF 938 W DQ923979 EU980803 DQ924088 EU981218
D. gabunensis Gürke K22560 Tanzania Bidgood et al. 2890 K Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291347
D. gilletii De Wild K21198 Cameroon Harris & Fay 884 K Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291348
D. glandulosa Lace Eb053 Thailand Duangjai 114 KUFF, W DQ923916 EU980693 DQ924023 EU981108 KF291492 KF291669
D. glans F. White BT019 New Caledonia KF291809 KF291868 KF291927 KF291349
D. glans BT093 New Caledonia Turner et al. 093 MPU KF291810 KF291869 KF291928 KF291350 KF291493 KF291670
D. glans BT094 New Caledonia Turner et al. 094 MPU KF291811 KF291870 KF291929 KF291351 KF291494 KF291671
D. glaucifolia Metcalf K14256 China Chase 14256 K DQ923917 EU980694 DQ924024 EU981109
D. cf. gracilipes Hiern RF978 Madagascar RNF 978 W DQ923918 EU980695 DQ924025 EU981110
D. gracilis Fletcher Eb058 Thailand Duangjai 019 BK, BKF, KUFF, WU KF291812 KF291871 KF291930 KF291352 KF291495 KF291672
D. greenweyi F. White K21205 Somalia Friis et al. 4991 K Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291353
D. grisebachii (Heirn) Standl. W64 Cuba Abbott 18937 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291354
D. guianensis (Aubl.) Gürke W14 French Guiana Prévost & Sabatier 4029 W DQ923919 EU980696 DQ924026 EU981111
D. guianensis W78 French Guiana Mori 25921 NY, W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291355
D. hartmaniana S. Knapp K22455 Panama McPherson & Richardson 15959 MO Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291356
D. impolita F. White BT102 New Caledonia Schmid 5010 NOU019538 KF291813 KF291872 KF291931 KF291357 KF291496 KF291673
D. impolita BT105 New Caledonia Schmid 5010 NOU019538 KF291814 KF291873 KF291932 KF291358 KF291497 KF291674
D. inconstans Jacq. W79 Ecuador Rainer 1682 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291359
D. inexplorata F. White BT304 New Caledonia MacKee 22791 NOU005818 KF291815 KF291874 KF291933 KF291360 KF291498 KF291675
D. inexplorata BT311 New Caledonia MacKee 22791 NOU005818 KF291816 KF291875 KF291934 KF291361 KF291499 KF291676
D. insidiosa Bakh. Eb061 Thailand Duangjai 120 KUFF, W DQ923920 EU980697 DQ924027 EU981112
D. iturensis (Gürke) Letouzey & F. White K21204 Cameroon Harris & Fay 1513 K Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291362
D. kaki L.f. K920 Japan Chase 920 K DQ923921 EU980698 DQ924028 EU981113 KF291500 KF291677
D. kirkii Hiern K22551 Zimbabwe Poilecot 7650 K Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291363
D. kupensis Gosline AR62 Cameroon Russell 62 K Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291501 KF291678
D. labillardierei F. White BT121 New Caledonia Munzinger et al. 6624 NOU KF291817 KF291876 KF291935 KF291364 KF291502 KF291679
D. labillardierei BT122 New Caledonia Munzinger et al. 6624 NOU KF291818 KF291877 KF291936 KF291365 KF291503 KF291680
D. labillardierei BT179 New Caledonia KF291504 KF291681
D. labillardierei K20763 New Caledonia McPherson & Munzinger 18038 MO DQ923922 EU980699 DQ924029 EU981114
D. labillardierei M2219 New Caledonia Munzinger 2219 NOU006657 EU980828 EU980700 EU980951 EU981115 KF291505 KF291682
D. labillardierei M3053 New Caledonia Munzinger 3053 NOU008407 EU980829 EU980701 EU980952 EU981116 KF291506 KF291683
D. lanceifolia Roxb. K1245 Indonesia Chase 1245 K Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291366
D. leucomelas Poir. K25752 Mauritius Page 16 MAU Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291367
D. lotus L. D16 Living coll. HBV Turner D16 Living coll. HBV KF291507 KF291684
D. lotus K965 Living coll. Kew 1882-3501 Chase 965 K DQ923924 EU980703 DQ924031 EU981118
D. macrocarpa (Vieill.) Hiern BT043 New Caledonia KF291508 KF291685
D. macrocarpa BT044 New Caledonia KF291509 KF291686
D. macrocarpa BT048 New Caledonia KF291510 KF291687
D. macrocarpa BT049 New Caledonia KF291511 KF291688
D. macrocarpa BT050 New Caledonia KF291512 KF291689
D. macrocarpa M2014 New Caledonia Munzinger 2014 NOU003637 EU980830 EU980704 EU980953 EU981119
D. macrocarpa M2829 New Caledonia Munzinger 2829 NOU008233 DQ923925 EU980705 DQ924032 EU981120
D. maingayi (Hiern) Bakh. Eb073 Thailand Duangjai 131 KUFF, W DQ923926 EU980706 DQ924033 EU981121
D. malabarica (Desr.) Kostel. Eb066 Thailand Duangjai 006 KUFF, W EU980708 DQ923928 DQ924035 EU981123
D. malabarica K1247 Indonesia Chase 1247 K DQ923927 EU980707 DQ924034 EU981122
D. malabarica W47 South East Asia, cult. USA Abbott 14325 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291368
D. mannii Hiern K20597 Ghana Merello et al. 1348 MO DQ923929 EU980709 DQ924036 EU981124
D. margaretae F. White YP1267 New Caledonia Pillon 1267 NOU049432, WU062863 KF291819 KF291878 KF291937 KF291369 KF291513 KF291690
D. maritima Blume Eb209 Malaysia Wallnöfer 13948 W DQ923930 EU980710 DQ924037 EU981125
D. melanida Poir. K25786 Mauritius Page 112 MAU Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291370
D. melocarpa F. White K22457 Gabon SIMAB 012319 MO DQ923931 EU980711 DQ924038 EU981126
D. mespiliformis Hochst. Ex A.DC. Eb206 Tropical Africa Wallnöfer & Duangjai 13945 W DQ923932 EU980712 DQ924039 EU981127 KF291514 KF291691
D. mespiliformis W60 Senegal Prinz 2005-5 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291371
D. minimifolia F. White BT131 New Caledonia Dagostini 203 NOU019556 KF291820 KF291879 KF291938 KF291372 KF291515 KF291692
D. minimifolia BT133 New Caledonia Dagostini 203 NOU019556 KF291821 KF291880 KF291939 KF291373 KF291516 KF291693
D. minimifolia BT231 New Caledonia Veillon 7206 NOU019554 KF291517 KF291694
D. minimifolia BT264 New Caledonia Chambrey & Turner 24 NOU079549, WU062872 KF291518 KF291695
D. minimifolia M2214 New Caledonia Munzinger 2214 NOU006263 EU980831 EU980714 EU980954 EU981129 KF291519 KF291696
D. minimifolia M2374 New Caledonia Munzinger 2374 NOU006677 EU980832 EU980715 EU980955 EU981130 KF291520 KF291697
D. minimifolia/pustulata BT143 New Caledonia KF291521 KF291698
D. mollis Griff. Eb074 Thailand Duangjai 132 KUFF, W DQ923934 EU980716 DQ924041 EU981131 KF291522 KF291699
D. montana Roxb. Eb078 Thailand Duangjai 136 KUFF, W DQ923935 EU980717 DQ924042 EU981132
D. montana Eb130 Thailand Duangjai & Sinbumrung 017 KUFF, W DQ923943 EU980733 DQ924050 EU981148
D. myriophylla (H. Perrier) G.E. Schatz & Lowry W34 Madagascar Sieder 209 W DQ923974 EU980797 DQ924083 EU981212
D. natalensis (Harv.) Brenan K22554 Zambia Bingham 10635 K DQ923936 EU980718 DQ924043 EU981133
D. nigra (J.F. Gmel.) Perrier K212 Cult. Mexico Chase 212 NCU DQ923906 EU980676 DQ924013 EU981091
D. nigra K1146 Cult. Mexico Chase 1146 K Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291374
D. obliquifolia (Hiern ex Gürke) F. White W91 Cameroon Rainer 6.3.2007 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291375
D. oblonga Wall. Ex G. Don. Eb083 Thailand Duangjai 141 KUFF, W DQ923937 EU980719 DQ924044 EU981134
D. olen Hiern BT001 New Caledonia Munzinger et al. 6609 NOU KF291822 KF291881 KF291940 KF291376 KF291523 KF291700
D. olen BT032 New Caledonia KF291524 KF291701
D. olen BT034 New Caledonia KF291525 KF291702
D. olen BT169 New Caledonia Munzinger et al. 6634 NOU KF291526 KF291703
D. olen BT302 New Caledonia KF291527 KF291704
D. olen K20598 New Caledonia Lowry et al. 5628 MO, NOU004840 DQ923938 EU980720 DQ924045 EU981135
D. olen M2827 New Caledonia Munzinger 2827 NOU008235 EU980833 EU980721 EU980956 EU981136
D. olen YP153 New Caledonia Pillon 153 NOU006438 EU980834 EU980722 EU980957 EU981137
D. oubatchensis Kosterm. BT160 New Caledonia LeCore et al. 768 NOU079472 KF291823 KF291882 KF291941 KF291377 KF291528 KF291705
D. oubatchensis BT161 New Caledonia LeCore et al. 768 NOU079472 KF291824 KF291883 KF291942 KF291378 KF291529 KF291706
D. oubatchensis M3118 New Caledonia Munzinger 3118 NOU009675 EU980835 EU980723 EU980958 EU981138
D. oubatchensis M3333 New Caledonia Munzinger 3333 NOU011201 EU980836 EU980724 EU980959 EU981139
D. ovalifolia Wight DY10 Sri Lanka Yakandawala 10 PDA Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291379
D. pancheri Kosterm. BT027 New Caledonia Munzinger et al. 6619 NOU KF291825 KF291884 KF291943 KF291380 KF291530 KF291707
D. pancheri BT028 New Caledonia Munzinger et al. 6619 NOU KF291826 KF291885 KF291944 KF291381 KF291531 KF291708
D. pancheri BT029 New Caledonia Munzinger et al. 6619 NOU KF291532 KF291709
D. pancheri BT030 New Caledonia Munzinger et al. 6620 NOU KF291533 KF291710
D. pancheri BT031 New Caledonia Munzinger et al. 6620 NOU KF291534 KF291711
D. pancheri BT033 New Caledonia Munzinger et al. 6620 NOU KF291827 KF291886 KF291945 KF291382 KF291535 KF291712
D. pancheri BT035 New Caledonia Munzinger et al. 6620 NOU KF291536 KF291713
D. pancheri BT076 New Caledonia KF291537 KF291714
D. pancheri M2138 New Caledonia Munzinger 2138 NOU003868 EU980837 EU980725 EU980960 EU981140 KF291538 KF291715
D. pancheri/parviflora M2338 New Caledonia Munzinger 2338 NOU006586 EU980838 EU980726 EU980961 EU981141 KF291539 KF291716
D. parviflora (Schltr.) Bakh. BT038 New Caledonia KF291828 KF291887 KF291946 KF291383
D. parviflora BT039 New Caledonia KF291829 KF291888 KF291947 KF291384 KF291540 KF291717
D. parviflora BT040 New Caledonia KF291541 KF291718
D. parviflora BT042 New Caledonia KF291542 KF291719
D. parviflora BT187 New Caledonia Munzinger et al. 6636 NOU KF291543 KF291720
D. parviflora M2037 New Caledonia Munzinger 2037 NOU002519 EU980839 EU980727 EU980962 EU981142 KF291544 KF291721
D. parviflora M2071 New Caledonia Munzinger 2071 NOU002608 EU980869 EU980776 EU980992 EU981191 KF291545 KF291722
D. parviflora M2708 New Caledonia Munzinger 2708 NOU006658 EU980728 EU980840 EU980963 EU981143
D. parviflora M3035 New Caledonia Munzinger 3035 NOU008397 EU980842 EU980736 EU980965 EU981151
D. pentamera (Woolls & F. Muell.) F. Muell. K22549 Australia Forster & Booth 25525 K DQ923939 EU980729 DQ924046 EU981144
D. perplexa F. White BT004 New Caledonia Munzinger et al. 6611 NOU KF291830 KF291889 KF291948 KF291385 KF291546 KF291723
D. perplexa BT005 New Caledonia Munzinger et al. 6611 NOU KF291831 KF291890 KF291949 KF291386 KF291547 KF291724
D. perplexa BT009 New Caledonia Munzinger et al. 6611 NOU KF291832 KF291891 KF291950 KF291387 KF291548 KF291725
D. perplexa BT147 New Caledonia Munzinger et al. 6630 NOU KF291549 KF291726
D. perplexa BT148 New Caledonia Munzinger et al. 6630 NOU KF291550 KF291727
D. perplexa VH3614 New Caledonia Hequet et al. 3614 NOU016957 EU980873 EU980786 EU980996 EU981201 KF291551 KF291728
D. philippinensis A.DC. K1248 Indonesia Chase 1248 K DQ923940 EU980730 DQ924047 EU981145
D. philippinensis W62 Taiwan Chung & Anderberg 1400 HAST Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291388
D. pilosanthera Blanco Eb091 Thailand Duangjai 149 KUFF, W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291389
D. pilosiuscula G. Don Eb092 Thailand Duangjai 150 KUFF, W DQ923941 EU980731 DQ924048 EU981146
D. preussii Gürke LPJMO39 Cameroon LPJMO39 YA Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291390
D. pruriens Dalzell W81 India DeFranceschi 18.12.2006 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291391
D. pseudomespilus Mildbr. K20606 Gabon Walters et al. 956 MO DQ923942 EU980732 DQ924049 EU981147
D. puncticulosa Bakh. Eb150 Brunei Duangjai et al. 018 BRUN, W, WU DQ923944 EU980734 DQ924051 EU981149
D. pustulata F. White BT113 New Caledonia KF291833 KF291892 KF291951 KF291392 KF291552 KF291729
D. pustulata BT114 New Caledonia KF291834 KF291893 KF291952 KF291393 KF291553 KF291730
D. pustulata BT136 New Caledonia Munzinger et al. 6629 NOU KF291554 KF291731
D. pustulata BT137 New Caledonia Munzinger et al. 6629 NOU KF291555 KF291732
D. pustulata BT257 New Caledonia Cambrey & Turner 21 NOU079548, WU062871 KF291556 KF291733
D. pustulata M3580 New Caledonia Munzinger 3580 NOU016720 EU980843 EU980737 EU980966 EU981152 KF291557 KF291734
D. pustulata M3584 New Caledonia Munzinger 3584 NOU016734 EU980844 EU980738 EU980967 EU981153 KF291558 KF291735
D. pustulata VH3638 New Caledonia Hequet et al. 3638 NOU017016 KF291559 KF291736
D. pustulata/yahouensis BT259 New Caledonia Chambrey & Turner 26 WU062855 KF291835 KF291894 KF291953 KF291394 KF291560 KF291737
D. racemosa Roxb. Eb106 Thailand Duangjai 164 KUFF EU980856 EU980759 EU980979 EU981174 KF291561 KF291738
D. revaughanii I. Richardson K25760 Mauritius Page 47 MAU Duangjai unpubl Duangjai unpubl Duangjai unpubl KF291395
D. revolutissima F. White BT116 New Caledonia MacKee 22382 NOU023189 KF291836 KF291895 KF291954 KF291396 KF291562 KF291739
D. revolutissima BT117 New Caledonia MacKee 22382 NOU023189 KF291837 KF291896 KF291955 KF291397 KF291563 KF291740
D. revolutissima BT218 New Caledonia Munzinger et al. 6640 NOU KF291564 KF291741
D. revolutissima BT219 New Caledonia Munzinger et al. 6640 NOU KF291565 KF291742
D. revolutissima YP204 New Caledonia Pillon 204 NOU009155 EU980846 EU980740 EU980969 EU981155 KF291566 KF291743
D. rhodocalyx Kurz Eb096 Thailand Duangjai 154 KUFF, WU KF291838 KF291897 KF291956 KF291398 KF291567 KF291744
D. rhombifolia Hemsl. Eb129 Thailand Duangjai & Sinbumrung 016 KUFF, W DQ923945 EU980741 DQ924052 EU981156
D. cf. rhombifolia W76 Cult. USA, (South East Asia) Abbott 20824 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291399
D. ridleyi Bakh. Eb138 Brunei Duangjai et al. 002 BRUN, W, WU DQ923946 EU980742 DQ924053 EU981157 KF291568 KF291745
D. rigida Hiern Eb140 Brunei Duangjai et al. 004 BRUN, W, WU DQ923947 EU980743 DQ924054 EU981158
D. ropourea B. Walln. W20 French Guiana Wallnöfer 13459 W DQ923948 EU980744 DQ924055 EU981159
D. salicifolia Humb. & Bonpl. ex Willd. W66 Guatemala Abbott 19765 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291400
D. salicifolia W67 Guatemala Abbott 19777 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291401
D. samoensis A. Gray Eb176 Cult. Hawaii Bot Garden Kiehn s.n. WU EU980745 EU980847 EU980970 EU981160
D. samoensis M3593 Vanuatu Munzinger 3593 NOU080070 EU980848 EU980746 EU980971 EU981161
D. samoensis M3624 Vanuatu Munzinger 3624 NOU080138, NOU080139 EU980849 EU980747 EU980972 EU981162 KF291569 KF291746
D. samoensis M3691 Vanuatu Munzinger 3691 NOU EU980850 EU980748 EU980973 EU981163
D. sandwicensis (A.DC.) Fosberg Eb175 Cult. Hawaii Bot Garden Kiehn s.n. WU EU980851 EU980749 EU980974 EU981164 KF291570 KF291747
D. scabra (Chiov.) Cufod. K21206 Ethiopia Wondefrash & Tefera 9622 K Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291402
D. scalariformis Fletcher Eb172 Thailand Duangjai & Sinbumrung s.n. KUFF, W EU980750 EU980852 EU980975 EU981165
D. senensis Klotzsch K22552 Zambia Bingham 11092 K EU980853 EU980751 EU980976 EU981166
D. squarrosa Klotzsch K21207 Somalia Friis et al. 4894 K Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291417
D. squarrosa K22555 Zambia Bingham & Downie 11465 K EU980854 EU980752 EU980977 EU981167
D. styraciformis King & Gamble Eb149 Brunei Duangjai et al. 017 BRUN, W, WU DQ923949 EU980753 DQ924056 EU981168
D. sumatrana Miq. Eb099 Thailand Duangjai 157 KUFF, W EU980855 EU980754 EU980978 EU981169
D. tenuiflora A.C.Sm. W32 Brazil Maas et al. 9186 NY, W DQ923923 EU980702 DQ924030 EU981117
D. tesselaria Poir. K25751 Mauritius Page 15 MAU Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291418
D. tetrandra Hiern W31 French Guiana Prévost & Sabatier 4713 W DQ923951 EU980756 DQ924058 EU981171
D. tetrasperma Sw. K14254 Mexico Chase 14254 K, W DQ923952 EU980757 DQ924059 EU981172
D. texana Scheele Eb208 Middle America Wallnöfer & Duangjai 13946 W DQ923953 EU980758 DQ924060 EU981173 KF291575 KF291752
D. tireliae F. White M5725 New Caledonia Munzinger 5725 NOU051026 KF291843 KF291902 KF291961 KF291419 KF291576 KF291753
D. tridentata F. White BT202 New Caledonia Munzinger et al. 6639 NOU KF291844 KF291903 KF291962 KF291420 KF291577 KF291754
D. tridentata BT203 New Caledonia Munzinger et al. 6639 NOU KF291845 KF291904 KF291963 KF291421 KF291578 KF291755
D. trisulca F. White BT185 New Caledonia Hequet (leg. Butin) 3820 NOU031344 KF291846 KF291905 KF291964 KF291422 KF291579 KF291756
D. trisulca BT189 New Caledonia Hequet (leg. Butin) 3820 NOU031344 KF291847 KF291906 KF291965 KF291423 KF291580 KF291757
D. trisulca BT192 New Caledonia Hequet (leg. Butin) 3820 NOU031344 KF291848 KF291907 KF291966 KF291424 KF291581 KF291758
D. trisulca BT197 New Caledonia Munzinger et al. 6637 NOU KF291582 KF291759
D. trisulca M3179 New Caledonia Munzinger 3179 NOU016896 EU980871 EU980784 EU980994 EU981199
D. trisulca M3260 New Caledonia Munzinger 3260 NOU016891, WU062868 EU980872 EU980785 EU980995 EU981200 KF291583 KF291760
D. cf. ulo Merr. Eb152 Brunei Duangjai et al. 021 BRUN, W, WU EU980857 EU980760 EU980980 EU981175 KF291462 KF291639
D. umbrosa F. White BT065 New Caledonia KF291849 KF291908 KF291967 KF291425 KF291584 KF291761
D. umbrosa BT066 New Caledonia KF291585 KF291762
D. umbrosa BT071 New Caledonia KF291586 KF291763
D. umbrosa BT246 New Caledonia McPherson 2144 NOU023234 KF291850 KF291909 KF291968 KF291426 KF291587 KF291764
D. umbrosa BT247 New Caledonia McPherson 2144 NOU023234 KF291851 KF291910 KF291969 KF291427 KF291588 KF291765
D. umbrosa BT256 New Caledonia McPherson 2144 NOU023234 KF291589 KF291766
D. umbrosa M2265 New Caledonia Munzinger 2265 NOU006679 EU980858 EU980761 EU980981 EU981176 KF291590 KF291767
D. umbrosa M2636 New Caledonia Munzinger 2636 NOU006678 EU980859 EU980762 EU980982 EU981177 KF291591 KF291768
D. umbrosa M2771 New Caledonia Munzinger 2771 NOU007912 EU980860 EU980763 EU980983 EU981178 KF291592 KF291769
D. undulata Wall. Ex G. Don Eb112 Thailand Duangjai 170 KUFF, W DQ923954 EU980764 DQ924061 EU981179
D. veillonii F. White BT224 New Caledonia Veillon 7919 NOU019582 KF291852 KF291911 KF291970 KF291428 KF291593 KF291770
D. veillonii BT229 New Caledonia Veillon 7919 NOU019582 KF291853 KF291912 KF291971 KF291429 KF291594 KF291771
D. veillonii M.sn. New Caledonia Munzinger s.n. Living coll. Hortus Veillonii EU980861 EU980765 EU980984 EU981180 KF291595 KF291772
D. venosa Wall ex A.DC Eb119 Thailand Duangjai 177 KUFF, W DQ923955 EU980767 DQ924062 EU981182 KF291596 KF291773
D. venosa Eb131 Thailand Duangjai 059 KUFF, W EU980862 EU980766 EU980985 EU981181
D. vera (Lour.) A. Chev. DY16 Sri Lanka Yakandawala 16 PDA EU980823 EU980682 EU980946 EU981097
D. vera Eb045 Thailand Duangjai 106 KUFF DQ923910 EU980683 DQ924017 EU981098 KF291597 KF291774
D. vera K21193 Central African Republic Harris & Fay 2032 K EU980824 EU980684 EU980947 EU981099
D. vestita Benoist W01 French Guiana Molino 1849 W DQ923956 EU980768 DQ924063 EU981183
D. vieillardii (Hiern) Kosterm. BT025 New Caledonia Munzinger et al. 6618 NOU KF291854 KF291913 KF291972 KF291430 KF291598 KF291775
D. vieillardii BT026 New Caledonia Munzinger et al. 6618 NOU KF291855 KF291914 KF291973 KF291431 KF291599 KF291776
D. vieillardii BT055 New Caledonia KF291600 KF291777
D. vieillardii BT057 New Caledonia KF291601 KF291778
D. vieillardii BT099 New Caledonia KF291602 KF291779
D. vieillardii BT100 New Caledonia KF291603 KF291780
D. vieillardii BT213 New Caledonia MacKee 25141 NOU023242 KF291604 KF291781
D. vieillardii BT214 New Caledonia MacKee 25141 NOU023242 KF291605 KF291782
D. vieillardii BT286 New Caledonia Chambrey & Turner 13 NOU054004, WU062859 KF291606 KF291783
D. vieillardii BT325 New Caledonia Munzinger et al. 6657 NOU, P KF291607 KF291784
D. vieillardii M2106 New Caledonia Munzinger 2106 NOU006676 EU980863 EU980769 EU980986 EU981184 KF291608 KF291785
D. vieillardii M2776 New Caledonia Munzinger 2776 NOU008207 EU980864 EU980770 EU980987 EU981185
D. vieillardii M3476 New Caledonia Munzinger 3476 NOU012947 KF291609 KF291786
D. vieillardii M3572 New Caledonia Munzinger 3572 NOU016733 EU980866 EU980772 EU980989 EU981187 KF291610 KF291787
D. vieillardii YP146 New Caledonia Pillon 146 NOU006400 EU980867 EU980773 EU980990 EU981052 KF291611 KF291788
D. virginiana L. K14255 USA Chase 14255 K DQ923957 EU980774 DQ924064 EU981189 KF291612 KF291789
D. wallichii King & Gamble ex King Eb122 Thailand Duangjai 180 KUFF, W EU980868 EU980775 EU980991 EU981190 KF291613 KF291790
D. wallichii Eb165 Brunei Duangjai et al. 41 BRUN, W, WU KF291614 KF291791
D. winitii Fletcher Eb123 Thailand Duangjai 181 KUFF, WU KF291615 KF291792
D. yahouensis (Schltr.) Kosterm. BT237 New Caledonia Schlechter 15059 P00057340 KF291856 KF291915 KF291974 KF291432 KF291616 KF291793
D. yahouensis BT238 New Caledonia Schlechter 15059 P00057340 KF291857 KF291916 KF291975 KF291433 KF291617 KF291794
D. yahouensis BT239 New Caledonia Schlechter 15059 P00057340 KF291618 KF291795
D. yahouensis VH3637 New Caledonia Hequet et al. 3637 NOU017017 KF291858 KF291917 KF291976 KF291434 KF291619 KF291796
D. yatesiana Standl. W27 Guatemala Frisch s.n. W DQ923958 EU980777 DQ924065 EU981192
D. sp. Pic N’ga BT318 New Caledonia Munzinger 6065 NOU KF291839 KF291898 KF291957 KF291404 KF291572 KF291749
D. sp. Pic N’ga BT319 New Caledonia Munzinger 6065 NOU KF291840 KF291899 KF291958 KF291405 KF291573 KF291750
D. sp. Pic N’ga BT320 New Caledonia Munzinger 6065 NOU KF291841 KF291900 KF291959 KF291406 KF291574 KF291751
D. sp. FS1637 Madagascar Fischer & Sieder 1637 W DQ923959 EU980778 DQ924066 EU981193
D. sp. FS2217 Madagascar Fischer & Sieder 2217 W DQ923960 EU980779 DQ924067 EU981194
D. sp. K20600 Madagascar Rabenantoandro et al. 1246 MO DQ923961 EU980780 DQ924068 EU981195
D. sp. K20601 Madagascar Rabevohitra et al. 3660 MO DQ923973 EU980796 DQ924082 EU981211
D. sp. K20613 Zambia Zimba et al. 893 MO DQ923962 EU980781 DQ924069 EU981196
D. sp. K20616 Ghana Schmidt et al. 2207 MO DQ923963 EU980783 DQ924070 EU981198
D. sp. K25759 Mauritius Page 46 MAU Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291403
D. sp. RF958 Madagascar RNF 958 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291407
D. sp. RF959 Madagascar RNF 959 W DQ923980 EU980804 DQ924089 EU981219
D. sp. RF970 Madagascar RNF 970 W DQ923964 EU980787 DQ924071 EU981202
D. sp. S10 Sri Lanka Samuel 10 PDA Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291408
D. sp. S12 Sri Lanka Samuel 12 PDA Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291409
D. sp. S18 Sri Lanka Samuel 18 PDA Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291410
D. sp. S22 Sri Lanka Samuel 22 PDA Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291411
D. sp. S25 Sri Lanka Samuel 25 PDA Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291412
D. sp. S26 Sri Lanka Samuel 26 PDA Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291413
D. sp. S28 Sri Lanka Samuel 28 PDA Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291414
D. sp. W33 Madagascar Sieder 440 W KF291842 KF291901 KF291960 KF291415 KF291571 KF291748
D. sp. W36 Madagascar Sieder et al. 258 W DQ923965 EU980788 DQ924072 EU981203
D. sp. W77 Madagascar Sieder et al. 3079 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291416
Euclea crispa (Thunb.) Gürke Eb202 Living coll. HBV (EB 4/2) Wallnöfer 13949 W DQ923966 EU980789 DQ924073 EU981204
Euclea crispa K21188 Malawi Chapman & Chapman 8085 K Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291435
Euclea divinorum Hiern Eb201 Cult. HBV (EB 2/1, Salisburg 69) Wallnöfer & Duangjai 13947 W DQ923967 EU980790 DQ924074 EU981205
Euclea natalensis A.DC. K21186 Zimbabwe Timberlake & Cunliffe 4389 K Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291436
Euclea natalensis W08 South Africa Kurzweil E514 W DQ923968 EU980791 DQ924075 EU981206
Euclea pseudobenus E. Mey. ex A.DC K21190 Namibia Ward 9205 K Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291437
Euclea racemosa L. K21183 Somalia Thulin 10739 K Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291438
Euclea sp. W58 Tanzania Kutalek 1-2001 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291439
Euclea sp. W59 Tanzania Mbeyela 2-2001 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291440
Euclea undulata Thunb. Eb200 Cult. HBV (EB 5/2, 1973) Wallnöfer 13897 W EU980874 EU980792 DQ924076 EU981207 KF291620 KF291797
Royena cordata E. Mey ex A.DC K1144 South Africa Chase 1144 K DQ923975 EU980799 DQ924084 EU981214
Royena glabra L. W05 South Africa Kurzweil 2097 W DQ923976 EU980800 DQ924085 EU981215
Royena lucida L. Eb203 South Africa Wallnöfer & Duangjai 13943 W DQ923977 EU980801 DQ924086 EU981216
Royena lucida W06 South Africa Kurzweil E513 W Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291442
Royena lycioides Desf. Ex A.DC K977 South Africa Chase 977 K DQ923978 EU980802 DQ924087 EU981217
Royena sp. K1145 South Africa Chase 1145 K KF291859 KF291918 KF291977 KF291444
Royena whyteana Hiern Eb177 Africa Kiehn s.n. WU Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291443 KF291622 KF291799
Royena zombensis B.L. Burtt K22558 Tanzania Abdallah & Vollesen 95/106 K Duangjai unpubl. Duangjai unpubl. Duangjai unpubl. KF291445
Lissocarpa benthamii Gürke W61 Venezuela Berry et al. 7217 PORT DQ923969 EU980793 DQ924077 EU981208
Lissocarpa guianensis Gleason W04 Guyana Arets s.n. U DQ923970 EU980794 DQ924078 EU981209
Lissocarpa stenocarpa Steyerm. K20609 Peru Vásquez & Ortiz-Gentry 25233 MO DQ923971 EU980795 DQ924079 EU981210
Argania spinosa (L.) Skeels K978 Morocco Chase 978 K DQ923981 EU980805 DQ924090 KF291308
Cleyera japonica Thunb. K1690 Japan Chase 1690 K DQ923985 EU980811 DQ924094 KF291309
Halesia carolina L. K910 USA Chase 910 K KF291621 KF291798
Madhuca macrophylla (Hassk.) H.J. Lam K1363 Cult. Indonesia Chase 1363 K DQ923982 EU980806 DQ924091 KF291441
Styrax benzoin Dryand. K1371 Indonesia Chase 1371 K DQ923989 EU980809 DQ924098 KF291446
Styrax officinalis L. K872 Living coll. RGB Kew 1973-14474 Chase 872 K KF291623 KF291800

2.2. DNA extraction

For DNA extraction the sorbitol/high-salt CTAB method (Tel-Zur et al., 1999), modified for 2 ml micro-centrifuge tubes, was used. Tubes containing silica gel-dried material were frozen with liquid nitrogen (to keep material frozen during grinding to avoid enzymatic action) and then ground with glass-beads to a fine powder. Prior to extraction, ground material was washed three times with sorbitol buffer.

2.3. PCR and cycle sequencing

We sequenced four plastid regions: atpB, rbcL, trnKmatK (partial trnK intron and complete matK gene) and trnStrnG, which collectively represent approximately 6.5 kb. Primers and PCR conditions are those of Duangjai et al. (2009). We added 136 accessions to the matrix of Duangjai et al. (2009).

Chloroplast-expressed glutamine synthetase (ncpGS) was amplified with primers designed for this study (GScpDio1F and GScpDioR; Table 4). Initial Diospyros sequences for primer design were obtained with the primers and PCR protocol of Yockteng and Nadot (2004). Primers were situated at the end of exon 7 (forward) and beginning of exon 11 (reverse), amplifying a fragment between 700 and 715 bp (Fig. 2). Primers used for PCR were also used for cycle sequencing (Tables 2 and 3).

Table 4.

Primers used in this study.

Primer name Fragment Sequence (5’-3’) References
GScp839F ncpGS CACCAATGGGGAGGTTATGC Yockteng and Nadot (2004)
GScp1056R ncpGS CATCTTCCCTCATGCTCTTTGT Yockteng and Nadot (2004)
GscpDio1F ncpGS CCAATGGGGAGGTTATGCCTGGACAG This study
GScpDioR ncpGS CATCTTCCCTCATGCTCTTTGTACTG This study
PHYA upstream phyA GACTTTGARCCNGTBAAGCCTTAYG Mathews and Donoghue (1999)
PHYA downstream phyA GDATDGCRTCCATYTCRTAGTC Mathews and Donoghue (1999)
PhyADioF phyA GTBAAGCCTTAYGAAGTCCCGATGA This study
PhyADioFi phyA GTCAAYGAGGGGGATGRAGAGGGAG This study
PhyADioR phyA GCRTCCATYTCRTAGTCCTTCCAAG This study
PhyADioRi phyA CTGATTYTCCAAYTCTAACTCCTTGTTGAC This study

Fig. 2.

Fig. 2

Schematic diagram of exon 7–exon 11 of ncpGS with primer positions and length of exons and introns. Numbers in parentheses give 5′ end of primers.

Table 2.

PCR reactions.

ncpGS 1st phyA 2nd phyA
18 μl 1.1xReddyMix (Thermo Scientific) 18 μl 1.1xReddyMix (Thermo Scientific) 18 μl 1.1xReddyMix (Thermo Scientific)
0.4 μl Primer GScpDio1F (20 pM) 0.4 μl Primer PHYA upstream (20 pM) 0.4 μl Primer PhyADioF (20 pM)
0.4 μl Primer GScpDioR (20 pM) 0.4 μl Primer PHYA down-stream (20 pM) 0.4 μl Primer PhyADioR (20 pM)
0.7 μl Water 0.7 μl Water 0.3 μl Water
0.4 μl BSA (20 mg/ml)
0.5 μl DNA 0.5 μl DNA 0.5 μl PCR product

BSA: bovine albumin serum (Thermo Scientific).

Table 3.

PCR conditions.

ncpGS 1st phyA 2nd phyA
95 °C for 2 min 95 °C for 2 min 95 °C for 2 min
95 °C for 30 s 95 °C for 30 s 95 °C for 30 s
58 °C for 30 s 35 cycles 52 °C for 30 s 35 cycles 60 °C for 30 s 35 cycles
72 °C for 2 min 70 °C for 2 min 72 °C for 1.5 min
72 °C for 7 min 70 °C for 7 min 72 °C for 7 min

Initial PCR products and sequences of PHYA were obtained with the locus-specific primers of Mathews and Donoghue (1999; PHYA upstream [2nd] and PHYA downstream [1st]). As these primers were not specific enough, we cloned the PCR products (see Section 2.4) to be able to design Diospyros-specific PHYA PCR and sequencing primers (PhyADioF, PhyADioR, PhyADioFi and PhyADioRi; Table 4; Fig. 3). However, as the new PCR primers designed for Diospyros did not amplify consistently, we used a two-step amplification protocol. In the first PCR, the universal PHYA primers were used, and then a second nested PCR was performed with the newly designed primers and the product from the first PCR as template. All primers are located in exon 1 of PHYA flanking a region of 1187 bp in length. PCR conditions and composition are provided in Tables 2 and 3. For cycle-sequencing, we used the two internal primers and the external reverse primer.

Fig. 3.

Fig. 3

Schematic diagram of exon 1 of phyA with primer positions and length of exon. Numbers in parentheses give 5′ end of primers.

PCR products were cleaned with a mixture of exonuclease I and alkaline phosphatase (10 units exo I and one unit FastAP, both from Thermo Scientific) and incubated at 37 °C for 45 min followed by 15 min at 80 °C to inactivate enzymes. Cycle sequencing reactions were performed with 0.8 μl BigDye Terminator v3.1 (AB, Live Technologies), 1.0 μl primer (3.2 μM), 1.6 μl 5× sequencing buffer and 6.6 μl cleaned-up PCR product using 35 cycles of 96 °C for 10 s, 50 °C for 5 s and 60 °C for 3 min. Sequences were produced on a capillary sequencer (3730 DNA Analyzer, AB, Life Technologies) following the manufacturer’s protocols.

2.4. Cloning

Cloning was needed to produce PHYA from some accessions; these where than used for development of more specific primers. In addition, cloning of samples was necessary when we failed to obtain good sequences with the Diospyros-specific primers. PCR products were obtained using the universal PHYA primers, and after gel purification (Inivsorb Spin DNA Extraction Kit, Invitek), cleaned products were cloned using the pGEM-T Easy cloning system (Promega), following the manufacturer’s protocol. Cloned fragments were amplified using M13-f47 and M13-r48 primers and the following PCR conditions: initial denaturation 94 °C for 3 min, 35 cycles of denaturation 94 °C for 30 s, annealing 62 °C for 30 s and extension 72 °C for 2 min followed by a final extension at 72 °C for 7 min.

2.5. Sequence assembly, and editing, and phylogenetic analyses

Assembly and editing of sequences was done with the SeqMan Pro of the Lasergene v8.1 software package (DNASTAR); alignment was conducted with MUSCLE v3.8 (Edgar, 2004) and inspected visually using BioEdit v7.0.4 (Hall, 1999). Discrimination between the two copies of PHYA that were recovered from some species was done based on the alignment, and the ‘wrong’ (highly divergent) copy was excluded from further analyses. To test congruence between the data sets, ILD (incongruence length difference) test (Farris et al., 1994) implemented in PAUP v4b10 (Swofford, 2003; termed the “partition homogeny test”) was carried out with 100 replicates. To speed up this analysis, the neo-endemic clade (where resolution is low due to lack of variability and therefore congruence is unlikely to be detected) was reduced to two accessions (D. sp. Pic N’ga BT318 and D. vieillardii BT025). Results of the ILD test indicated congruence of the four plastid data sets, and therefore the plastid data sets were combined; jModeltest indicated the same model could be used in all analyses without partitioning. Phylogenetic analyses were performed using PAUP v4b10 (Swofford, 2003) for maximum parsimony (MP) and RaxML (Stamatakis, 2006) for maximum likelihood (ML) analyses. For both methods, bootstrap with 1000 replicates was performed to estimate clade support. For Bayesian inference, the program BEAST v1.7.4 (Drummond et al., 2012) was used. Parsimony and Bayesian analyses were run on the Bioportal computer cluster of the University Oslo (www.bioportal.uio.no), and likelihood analyses were run on CIPRS Science Gateway (http://www.phylo.org/portal2/; Miller et al., 2010). Estimation of evolutionary models and values was conducted with jModeltest v2.0.1 (Darriba et al., 2012; Guindon and Gascuel, 2003). For the Bayesian analyses the general time reversible nucleotide substitution model (GTR; Tavaré, 1986) with among site rate variation modelled with a gamma distribution (GTR + Γ) was used for ncpGS, whereas for plastid data the same model was used but with a proportion of invariable sites (GTR + Γ + I). For PHYA the Hasegawa–Kishino–Yano nucleotide substitution model (HKY; Hasegawa et al., 1985) was used with among site rate variation modelled with a gamma distribution and a proportion of invariable sites (HKY + Γ + I). Base frequencies (uniform), substitution rates between bases (gamma shape 10), alpha (gamma shape 10), kappa (gamma shape 10) and p-inv (uniform) were inferred by Modeltest from each data set. We used a relaxed uncorrelated log-normal clock model (Drummond et al., 2006). As speciation model, we used a Yule model (Gernhard, 2008; Yule, 1925). For further details see Supplementary material S1. Two independent Metropolis-coupled Markov chain Monte Carlo (MCMC) analyses each with 20 million generations were run sampling each 1000th generation. The initial 10% of trees obtained from each MCMC run were removed as burn in; the remaining trees of both runs were used to calculate a maximum clade credibility tree.

2.6. Dating the tree

To obtain an overarching dated tree, we used parts (atpB and rbcL sequences of Cornales and Ericales) of the data set of Bell et al. (2010) and combined it with our matrix. This matrix consisted of two plastid markers (atpB and rbcL), which were analysed as two partitions. Dating analyses were run in BEAST with an uncorrelated log-normal relaxed clock under the GTR + Γ + I model. The tree was calibrated with two fossils, Paleoenkianthus sayrevillensis (90 myr; Nixon and Crepet, 1993) as minimum age for Ericales and A. cryptostoma (34 myr; Basinger and Christophel, 1985) as minimum age for Diospyros clade II. Both groups (Ericales and Diospyros calde II) were defined as monophyletic, including the stem. Following tmrca (time of most recent common ancestor) settings used were: log normal prior distribution with a mean of 1.5, log standard deviation of 0.5 and an offset of 89 (Ericales) and 33 (Diospyros clade II). Priors for the molecular clock were: ucld.stdev: log normal, mean 0.9, log stdev 1, initial value 0.5, mean in real space; ucld.mean: CTMC rate reference (Ferreira and Suchard, 2008, initial value 1. Details of settings for BEAST analysis are provided in Section 2.5 (above) and Supplementary material S2. In addition to the plastid marker dating, we also conducted an analysis with our combined data set. We used the same settings as for the Bayesian analysis, but we added two calibration points: A. cryptostoma at 34 myr (Basinger and Christophel, 1985) as minimum age for Diospyros clade II and the split of Diospyros and its sister clade, Euclea plus Royena, 42 myr, which is the minimum age of that node based on dating exercises with the plastid markers. All settings for the molecular clock were the same as those for the plastid data set. The input file used for dating the combined analysis is provided in Supplementary material S3.

2.7. Chromosome counts of Diospyros

Chromosome preparations were made using Feulgen staining following the protocol from Weiss-Schneeweiss et al. (2009). Root tips were collected from plant material growing in the Botanical Garden of the University of Vienna (HBV) and a private garden in New Caledonia. To arrest mitotic spindles, root tips were treated with 0.002 M 8-hydroxquinoline for 2 h at room temperature and 2 h at 4 °C (always in darkness because 8-hydroxquinoline is light sensitive). Pre-treated material was fixed for 12 h at room temperature in 3:1 ethanol:acetic acid and then stored at −20 °C until examined. Fixed root tips were washed in distilled water to remove fixative, hydrolysed in 5 N HCl for 30 min, washed again with distilled water and stained with Schiff’s reagent for approximately 2 h in the dark. Squash preparations were made under a coverslip in a drop of 45% acetic acid. Counts could only be made for few species because obtaining young, actively growing root-tips from New Caledonian Diospyros is difficult. Collecting root-tips from forest trees and shrubs is not possible because there are too many roots in the soil to determine which is from the plant of interest. An alternative method is to grow seedlings in the lab/greenhouse. Obtaining seeds from tropical plants is not easy because these species do not produce fruit at a specific time of the year and flowering is diffuse (only few flowers produced at a time), so one would have to visit the plants regularly for at least 1 year to collect seed material. The logistics of this in process in New Caledonia were difficult. In addition, we found germination of seeds and maintenance of Diospyros seedlings highly problematic. Fortunately, the material we were able to obtain is well distributed among the genome sizes obtained, so we can conclude more than would otherwise be possible.

2.8. Genome size estimations of Diospyros

Genome size was determined using flow cytometry performed on leaf material. Fresh tissue was used from plants growing in the HBV. In addition, recently collected silica-gel dried material from New Caledonia was used for several measurements because it was not possible to transport fresh leaf material from New Caledonia to the laboratory. Samples were chopped in Otto I buffer (Otto et al., 1981) together with leaves of the internal standard species, Solanum pseudocapsicum, 1C = 1.30 pg (Temsch et al., 2010) or Pisum sativum ´Kleine Rheinländeriń, 1C = 4.42 pg (Greilhuber and Ebert, 1994), according to the method of Galbraith et al. (1983). The isolate was filtered through a 30 μm nylon mesh, and RNA was digested with 15 mg/l RNase A for 30 min at 37 °C. Subsequently, DNA was stained in propidium iodide (50 mg/l) supplemented with Otto II buffer (Otto et al., 1981). Mean fluorescence intensity of a total of 15,000 particles was measured with a CyFlow cytometer (Partec, Münster, Germany) equipped with a green laser (Cobolt Samba, Cobolt AB, Stockholm, Sweden); the 1C-value was calculated according to the formula: (MFIobject/MFIStandard) × 1C-valueStandard, where MFI is the mean fluorescence intensity of the G1 nuclei population. Statistical significance of asymmetry between the results obtained from Diospyros species belonging to clade III and those from clades VII–XI was tested using SPSS 15.0 (SPSS, Chicago; IL, USA) and the non-parametric Mann–Whitney U-test because of non-homogeneity of variances between the two groups of variables (Levene’s test for equality of variances, < 0.05).

3. Results

The data characteristics and statistics from the maximum parsimony analyses of all three individual and the combined data sets are provided in Table 5. Since the focus of this paper is the New Caledonian Diospyros species from clade III, only results pertaining to this group will be discussed in detail. The other species have been included to (i) investigate the utility of these markers for resolving phylogenetic relationships within Diospyros and (ii) further evaluate the hypothesis (proposed by Duangjai et al., 2009) that not all New Caledonian Diospyros resulted from a single colonisation event.

Table 5.

Data characteristics and statistics from the maximum parsimony analyses of all three individual and the combined data sets.

Combined plastid markers ncpGS phyA Combined data set
Total no. of accessions 294 177 177 129
No. of outgroup accessions other than Ebenaceae 4 2 2 1
No. of outgroup accessions from Ebenaceae 21 2 2 2
No. of Diospyros accessions 269 173 173 126
No. of Diospyros species 149 64 64 64
No. of New Caledonian accessions 98 134 134 86
No. of New Caledonian species 28 28 28 28
No. of New Caledonian neoendemic accessions 83 112 112 74
No. of New Caledonian neoendemic species 21 21 21 21
Length of alignment 6556 1039 1187 8542
No. of variable characters 1880 532 374 1845
No. of parsimony informative characters 1126 (17.2%) 341 (32.8%) 223 (18.8%) 863 (10%)
No. of parsimony informative characters NCnc 44 (0.7%) 28 (2.7%) 14 (1.2%) 79 (0.9%)
Tree length of best parsimony tree (steps) 3808 1171 689 3259
Trees saved (parsimony analysis) 210 4810 1870 930
Consistency index 0.603 0.663 0.685 0.692
Retention index 0.857 0.857 0.893 0.848
Best fitting model GTR + Γ + I GTR + Γ HKY + Γ + I

3.1. Plastid markers

Parsimony analysis of the plastid data set produced 210 equally parsimonious trees, one of which (randomly selected) is shown to demonstrate comparative levels of divergence (Fig. 4). Clade names correspond to those of Duangjai et al. (2009). Resolution among the New Caledonian taxa of clade III is low, but monophyly of these taxa is strongly supported: bootstrap percentage MP (BMP) 88; bootstrap percentage ML (BML) 97; Bayesian posterior probability (BPP) 0.95. Furthermore, D. vieillardii (BMP 99, BML 98, BPP 1.00) and its position as sister (BMP 97, BML 96, BPP 1.00) to the rest of the clade are well supported. Within the NC clade III, only one group of three taxa (D. calciphila, D. inexplorata and D. sp. Pic N’ga) is supported in all three analyses (BMP 91, BML 92, BPP 1.00); this includes all accessions of each species forming unique clusters. There are a few more, weakly supported small groups in which individuals of one population fall together, but they are not consistent among the three analyses and fail to include all accessions of these species.

3.2. Low-copy nuclear markers

Nuclear markers contained proportionally more parsimony informative characters (ncpGS 2.7%, PHYA 1.2%) than the plastid markers (0.7%), but variation was still low. Some species form groups (Fig. 5), but they lack bootstrap and Bayesian posterior probability support. Among the three methods of analysis used for the ncpGS data set, Bayesian inference provides the best resolution (tree not shown), placing D. vieillardii (BBP 0.99) sister (BPP 1.00) to the rest of the NC clade. The relationship between D. veillonii and D. cherrieri (BPP 0.84) is weakly supported, but their position as subsequent sister of the rest of this clade is well supported (BPP 0.99). All individuals of D. umbrosa form a group with two individuals of D. trisulca (BBP 0.91). This set of accessions is subsequently sister (BBP 0.95) to the rest of the clade, within which there is no resolution. In the PHYA tree, there are only a few clades with strong support regardless of method of analysis. Clade III (BMP 100, BML 100, BPP 1.00) as monophyletic unit is confirmed, as well as the monophyly of NC clade III within it (BMP 77, BML 78, BPP 1.00). All included individuals of D. cherrieri fall together (BMP 84, BML 81, BPP 1.00) in the PHYA analyses. Only a single copy of ncpGS was recovered from all accessions investigated, as well as from most of the accessions of PHYA. Species from which two copies of PHYA were obtained when cloned are found in clades IX, X and XI (Fig. 4). The paralogous (divergent) copies of PHYA were easily detected and excluded from the phylogenetic analyses.

Fig. 5.

Fig. 5

Maximum parsimony trees inferred from the nuclear data sets, branch length scaled to same value on both trees. Bold branches have more than 70% support in all three analysis. New Caledonian taxa are coloured, red represents clade III NC. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3.3. Combined data set

The ILD test found the trees of the plastid and low-copy nuclear markers to be congruent with p-values of 0.01, which indicates that combined analysis was appropriate. In trees inferred from the combined data set (Fig. 6), species of clade III were highly supported (BMP 100, BML 100, BPP 1.00); they include the species of NC clade III, Indian Ocean islands, Thailand and Hawai‘i. Diospyros vera is sister to D. sandwicensis (BMP 100, BML 100, BPP 1.00) and then the NC clade III. NC clade III is moderately to well supported (BMP 83, BML 96, BPP 0.96). The position of D. vieillardii (BMP 100, BML 99, BPP 1.00) as sister to the rest of the clade is strongly supported (BMP 92, BML 98, BPP 1.00). All accessions of each of the two species, D. umbrosa (BMP < 70, BML 75, BPP 1.00) and D. flavocarpa (BMP < 70, BML < 70, BPP 0.99), form unique groups, which together are sister (BMP 100, BML 100, BPP 1.00) to the rest of the group. A sister relationship between D. cherrieri (BMP 96, BML 99, BPP 1.00) and D. veillonii (BMP 78, BML 86, BPP 1.00) is supported (BMP 75, BML 88, BPP 1.00). A clade comprising D. calciphila, D. inexplorata (both on coralline substrates) and D. sp. Pic N’ga (ultramafic substrate) is well supported (BMP 97, BML 99, BPP 1.00).

Fig. 6.

Fig. 6

Baysian maximum clade credibility tree inferred from the combined data set. Bold branches have more than 70% support in all three analysis, nodes with at least one support value ⩾70% are indicated with blue dots (BPP/BMP/BML). New Caledonian taxa are coloured, red represents clade III NC. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3.4. Dating analysis

We performed two dating analyses. The first one was based on a joint matrix of our plastid sequences together with the data set of Bell et al. (2010), which included many families across the whole Ericales with Cornales as outgroup. This dating analysis was used to get age estimates for the crown node of Ebenaceae, the two subfamilies Ebenoideae and Lissocarpoideae, the split of the three genera of Ebenoideae (Diospyros versus Euclea/Royena) and the main clades of Diospyros. The second dating analysis was based on our combined data set, which was used to infer ages of clades and species within Diospyros. The dating analysis of the over-arching matrix of plastid markers (Fig. S4, Supplementary material) indicates that the two subfamilies of Ebenaceae, Lissocarpoideae and Ebenoideae, diverged around 54 mya (42–65; 95% highest posterior density interval). The split of Diospyros from its sister genera, Euclea plus Royena occurred around 42 mya (35–50). The following conclusions are based on the dating analysis of the combined data set (Fig. 7). The Australian clade of Diospyros (clade II, Fig. 4), including five species from New Caledonia, separated from the rest of the genus around 34 mya (33–36), the New Caledonian and Australian members of this clade diverged around 20 mya (11–29). Divergence among the New Caledonian members began only about 6 mya (3–10). The two large main groups (clades V–XI and clade III, Fig. 4) diverged about 32 mya (25–35). The last common ancestor of D. fasciculosa and D. olen existed around 15 mya (11–19). Diospyros olen is around 5 myr (3–9) old and D. fasciculosa about 6 myr (3–10). Lineages of clade III started to diversify about 19 mya (13–21). Lineages forming NC clade III arrived in New Caledonia around 9 mya (6–13). Diospyros vieillardii is around 7 myr (5–10) old. The clade comprising D. cherrieri and D. veillonii is around 5 myr (3–8) old, and the two species separated around 3 mya (1–5). The clade including D. flavocarpa, D. umbrosa and one accession of D. trisulca is 5 myr (3–7) old. Diospyros flavocarpa is around 4 myr (3–6) old. The relationship between D. umbrosa and D. trisulca is not highly supported, but suggests an age of around 3 myr (2–5) for D. umbrosa. The group comprising D. calciphila, D. inexplorata and D. sp. Pic N’ga appears to be around 2 myr (1–3) old and started to diversify around 0.9 mya (0.5–2). Resolution between other species is too limited to say anything about their ages.

Fig. 7.

Fig. 7

Chronogram based on the combined data set. Ages are given (in million years) for nodes with more than 0.85 BPP. Nodes which were calibrated are marked with a black dot. Yellow bars represent the 95% highest posterior density interval. New Caledonian taxa are coloured, red represents clade III NC.

3.5. Chromosome counts and genome size

Chromosome counts made for Diospyros fasciculosa, D. inconstans, D. macrocarpa, D. minimifolia, D. pentamera, D. pustulata, D. texana, D. veillonii and D. yatesiana indicate that they are all diploid, 2= 30. The counts from the underlined species are here reported for the first time in literature. The other counts confirm results of White (1992).

Measurements of genome size showed differences among the New Caledonian species of Diospyros. Diospyros olen has with 1C = 0.86 pg, the smallest genome of the New Caledonian Diospyros species examined, followed by D. fasciculosa with 1C = 1.13 pg (both clade XI). The investigated species from the NC clade III have larger genomes (mean value 1C = 1.90 pg) than the two mentioned above (Table 6). We were not able to examine New Caledonian species from clade II. Finally, across whole genus Diospyros there is a significant difference (Mann Whitney U test, < 0.001) in genome size between clade III on the one hand and clades VI–XI on the other (Fig. 8). However, D. pentamera of clade II has a comparatively large genome (1C = 1.97 pg).

Table 6.

Genome size of Diospyros and other genera from Ebenoideae. S.D.: standard deviation, N: number of measurements (replicates), S.p.: Solanum pseudocapsicum, P.s.: Pisum sativum ‘Kleine Rheinländerin’.

Name Acc. nr 1C-value S.D. N Standard Material
D. calciphila BT313 1.99 1 S.p. Dry
D. calciphila BT316 1.97 1 P.s. Silicagel
D. cherrieri BT262 1.65 0.0092 5 S.p. Dry
D. cherrieri BT293 1.57 0.0117 2 S.p. Silicagel
D. discolor EBE100026 0.92 0.0020 3 S.p. Fresh
D. erudita BT260 2.17 1 S.p. Dry
D. erudita BT261 2.13 0.0367 3 S.p. Dry
D. erudita BT280 1.88 0.0253 3 S.p. Silicagel
D. fasciculosa BT012 1.19 0.0031 3 P.s. Silicagel
D. fasciculosa BT106 1.13 0.0064 3 P.s. Silicagel
D. fasciculosa BT144 1.22 0.0032 3 P.s. Silicagel
D. fasciculosa BT167 1.02 0.0318 4 P.s. Silicagel
D. fasciculosa BT212 1.09 0.0227 2 P.s. Silicagel
D. fasciculosa BT335 1.14 0.0300 3 P.s. Silicagel
D. glans BT019 2.03 1 S.p. Silicagel
D. glans BT093 2.02 0.0153 3 S.p. Dry
D. impolita BT101 1.79 1 P.s. Silicagel
D. impolita BT105 1.90 0.0132 3 P.s. Silicagel
D. inconstans 1.13 0.0019 3 S.p. Fresh
D. inexplorata BT304 1.94 0.0693 3 P.s. Silicagel
D. kaki Sharon 2.29 0.0121 3 S.p. Dry
D. lotus EBE 0.87 0.0075 8 S.p. Fresh
D. lotus EBE03002 0.86 0.0012 3 S.p. Fresh
D. mespiliformis EBE000001 1.24 0.0029 3 P.s. Fresh
D. mespiliformis EBE100027 1.27 0.0035 3 P.s. Fresh
D. minimifolia BT230 1.57 0.0445 3 P.s. Silicagel
D. olen BT001 0.82 0.0062 3 S.p. Silicagel
D. olen BT036 0.87 0.0475 3 S.p. Silicagel
D. olen BT096 0.86 0.0042 3 S.p. Dry
D. olen BT186 0.90 0.0041 3 S.p. Dry
D. pancheri BT077 2.28 0.0129 3 S.p. Dry
D. parviflora BT085 2.16 0.0493 3 P.s. Dry
D. pentamera EBE030020 1.97 0.0020 3 S.p. Fresh
D. perplexa BT002 2.27 1 S.p. Silicagel
D. pustulata BT137 1.54 0.0490 2 P.s. Silicagel
D. revolutissima BT222 2.05 0.0148 4 P.s. Dry
D. texana EBE020015 0.89 0.8849 3 S.p. Fresh
D. texana EBE100029 0.89 0.0019 3 S.p. Fresh
D. tridentata BT205 2.21 0.0246 2 S.p. Dry
D. tridentata BT206 2.09 1 P.s. Dry
D. umbrosa BT171 1.61 1 P.s. Silicagel
D. umbrosa BT247 1.51 0.0894 3 P.s. Silicagel
D. vieillardii BT100 1.55 1 P.s. Dry
D. vieillardii BT216 1.57 0.0238 3 P.s. Dry
D. yatesiana 0.60 0.0010 5 S.p. Fresh
E. divinorum EBE000002 1.98 0.0014 3 S.p. Fresh
E. undulata EBE100002 0.74 0.0220 3 S.p. Fresh
R. whyteana EBE030021 0.79 0.0031 3 S.p. Fresh
R. whyteana EBE030022 0.78 0.0007 3 S.p. Fresh

Fig. 8.

Fig. 8

Boxplot of genome size differences between taxa from clade III and those from clades VII–XI.

4. Discussion

Previous phylogenetic studies of Diospyros based on plastid markers demonstrated low levels of sequence divergence among New Caledonian species belonging to clade III (Duangjai et al., 2009), and inclusion of additional species in our investigation did not improve resolution in this group. Low-copy nuclear markers have been shown to be highly informative and useful for resolving phylogenetic relationships at lower taxonomic levels in some taxa (e.g. Passiflora: Yockteng and Nadot, 2004; Paeonia: Tank and Sang, 2001). The low-copy markers ncpGS and PHYA used here, however, did not improve resolution in this clade of 21 closely related species, thus preventing detection of hybrids and elucidation of geographical patterns (Fig. 5). There are also examples where low-copy nuclear markers were not able to fully resolve phylogenetic relationships between closely related species, especially on islands (e.g. Pillon et al., 2009a, 2013; Green et al., 2011). Nonetheless, the analysis based on combined plastid and nuclear data provides some resolution of relationships within the NC clade III. Of the 21 entities included in the analyses, seven species and one unidentified taxon formed well defined and inclusive clusters (Fig. 6). The remaining 14 species failed to form groups including all individuals of a particular species, but in many cases it was simply that some accessions were part of a polytomy and did not cluster consistently with any group.

In light of our results, members of the NC clade III appear little diverged but still form a strongly supported clade, which our dating analyses indicate are the result of recent rapid radiation. Only a few studies have examined the adaptive basis and processes involved in speciation in New Caledonia (e.g. Pillon et al., 2009b; Murienne et al., 2009). Rapid radiation has been observed in isolated areas such as islands (e.g. Givnish et al., 2009; Knope et al., 2012), high mountains (e.g. Hughes and Eastwood, 2006) and valleys (e.g. Givnish et al., 2007, 2011; Richardson et al., 2001). Island floras often show high levels of endemism and closely related species groups that result from a single colonisation event followed by rapid speciation, some of which have been hypothesised to represent adaptive radiations (e.g. Hawaiian silverswords, Baldwin and Sanderson, 1998; Hawaiian Bidens, Knope et al., 2012; Araucaria in New Caledonia, Gaudeul et al., 2012). The low levels of variation and resolution detected in the NC clade III prevent us from examining factors that may be promoting speciation on New Caledonia.

As all lineages of New Caledonian Diospyros seem to have arrived relatively recent on this island, the terms paleo-endemics and neo-endemics used by Duangjai et al. (2009) were not used here. The common ancestor of clade III diverged about 19 mya (Fig. 7), and the earlier diverging species occur mainly in Africa and on islands of the western Indian Ocean (e.g. Madagascar). Our results in combination with the DIVA analysis from Duangjai et al. (2009) indicate that, from there, this group spread eastwards via Southeast Asia, where it arrived around 15 mya, and then reached the Hawaiian Archipelago and New Caledonia around 9–10 mya. This time of colonisation is consistent with that found for other plant groups (reviewed in Pillon, 2012) and animals (e.g. Nattier et al., 2011). The close relationship of New Caledonian and Hawaiian endemic Diospyros shows that migration around the Pacific Ocean has taken place, but to make more definite conclusions about the direction of dispersal, data from species present on other islands between New Caledonia and Hawai‘i are needed. In contrast to long-held hypotheses that many taxa are Gondwanan relicts (e.g. Lowry II, 1998; Swenson et al., 2001), our results suggest that all groups of New Caledonian Diospyros are much younger than 37 myr (when New Caledonia re-emerged) and arrived, like many others, via long-distance dispersal (e.g. Bartish et al., 2011; Espeland and Murienne, 2011; Murienne, 2009).

The closely related species of the NC clade III are distinguishable from one another by morphological characters (e.g. leaf, flower, fruit and calyx characters), and many of them are found in different habitats (e.g. humid/dry, different substrate types, different elevations, etc.). Leaf morphology shows adaptation to the environment in which a species occurs (e.g. species found in dry habitats have sclerophyllous leaves; for details of species descriptions see White, 1992, 1993). In most plant groups, closely related species rarely occur in sympatry, but not in New Caledonia where this seems to be a common pattern in several groups (J. Munzinger pers. obs.), including Diospyros. However, Diospyros has been reported to be one of the few genera outside New Caledonia (e.g. Madagascar) with several co-occurring species (pers. comm. P.S. Ashton). The habitats occupied by the New Caledonian Diospyros species belonging to clade III can be roughly divided into seven groups (Table 7). D. vieillardii, a common species found all over Grande Terre and the islands north of the main island in maquis vegetation, occurs on a variety of substrates, including ultramafic. Diospyros umbrosa/D. flavocarpa are sister to the remainder of the clade excluding D. vieillardii (Fig. 6). D. umbrosa occurs only on ultramafic substrates in comparatively humid forests mainly consisting of Nothofagus and Araucaria. D. flavocarpa is found on schist in middle elevation forests in northeastern Grande Terre. Diospyros cherrieri (a local endemic in dry forests on basalts at the western coast of Grande Terre, Fig. 1I) and D. veillonii (a local endemic in dry coastal forests on black clay on the western side of Grande Terre, Fig. 1F) are together sister to the rest of the clade (minus those mentioned above). The clade comprising D. calciphila, D. inexplorata (littoral forests on coralline substrates) and D. sp. from Pic N’ga (maquis on ultramafic substrate on Ile des Pins) is well supported. Relationships among all other members of the clade could not be resolved with the markers used, although most of them are morphologically and ecologically well defined. This phenomenon (morphological and ecological distinctiveness, but no resolution) is found, for example, in D. labillardieri (lanceolate leaves, hanging branches; river edges in middle elevation forests on schist, Fig 1D), D. pancheri (obcordate pubescent leaves, hanging branches, humid forests at low elevation on ultramafic soils, Fig. 1E) and many others. Due to the poor resolution of the phylogenetic trees, possible grouping of New Caledonian Diospyros species according to their ecological niches remains untested.

Table 7.

Main habitats of New Caledonian neoendemic Diospyros species.

Habitat Species
Maquis on ultramafic substrates D. erudita, D. pancheri, D. parviflora, D. tireliae, D. vieillardii
Dry forests on non-ultramafic substrates D. cherrieri, D. perplexa, D. yahouensis



Humid forests at low elevations Ultramafic substrates D. pancheri, D. parvilfora, D. umbrosa
Calcareous rocks D. tridentata
Humid mountain forests on schist D. flavocarpa, D. labillardierei, D. trisulca



Dry coastal forests Black clays D. veillonii, D. minimifolia, D. pustulata (the latter two can also occur on calcareous substrates)
Schist D. impolita
Ultramafic substrates D. revolutissima
Various substrates D. pancheri
Coastal forests on coralline substrates D. calciphila, D. impolita
Humid forests on the east coast D. glans

A greater than threefold variation within the genome size of Diospyros is observed, although the chromosome counts performed here and elsewhere indicates that they are diploid with 2= 30, and we hypothesize that the most recent common ancestor of Diospyros had a large genome because species belonging to earlier diverging clades (e.g. E. divinorum and D. pentamera) have large genomes. Developing firmer ideas about evolution of genome size in Diospyros would require many more measurements of species from throughout the phylogenetic tree, especially species from islands in the Indian and Pacific Ocean, which will be key to assessing evolution of genome size in NC clade III. The limited data available today suggest that polyploidy seems to be rare among wild Diospyros species. The diversification of species of the NC clade III remains an overall poorly understood subject, despite our extensive efforts to find variation relevant to addressing these questions. It seems that we can eliminate polyploidy as one feature of their evolution, but the question of the involvement of hybridization cannot be eliminated without the use of more variable markers. To address patterns of speciation and factors promoting divergence, we will have to turn more markers used in population genetic studies, such as AFLPs, microsatellites or fingerprinting methods based on next generation sequencing methods.

Acknowledgments

This work was funded by a grant from the Austrian Science Fund (FWF, Project-Number: P 22159-B16) awarded to R. Samuel. The authors thank the team of the Department of Systematic and Evolutionary Botany as well as the team of the Botanic Department of IRD Noumea for support with this study. Special thanks go to V. Klenja for the lab work. Thanks to the following persons for their help with lab work, field work and ideas to improve our manuscript: J.-P. Butin, C. Chambrey, G. Dagostini, E. Grasserbauer, V. Hequet, G. Kohl, D. & I. Létocart, F. Maghuly, W. Nigote, O. Paun, G. Schneeweiss, J. Schönenberger, H. Vandrot, Fam. Villegente, B. Wallnöfer and H. Weiss-Schneeweiss.

Footnotes

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

Appendix A

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ympev.2013.07.002.

Appendix A. Supplementary material

Supplementary Figure 1.

Supplementary Figure 1

Dated phylogeny of Ericales based on the a joint matrix the data set of Bell et al. (2010) together with our plastid sequences. Taxa from families other than Ebenaceae are collapsed to family level, taxa other than Diospyros are collapsed to generic level. Multiple accessions of a species are collapsed to species level. The NC clade III part of the tree is mostly collapsed due to lack of support of respective nodes. Nodes which were calibrated with fossils are marked with a black dot. Yellow bars represent the 95% highest posterior density interval. New Caledonian taxa are coloured, red represents clade III NC.

Supplementary data 1

BEAST input file for the Bayesian analysis of the combined data set. For Bayesian analyses of the individual data sets we used the same settings as in the combined analysis for the respective data set.

mmc1.xml (51.6KB, xml)
Supplementary data 2

BEAST input file for dating analysis of the plastid marker data set from Bell et al. (2010) merged with our data.

mmc2.xml (82.1KB, xml)
Supplementary data 3

BEAST input file for dating analysis of the combined data set.

mmc3.xml (53.5KB, xml)

References

  1. Alba R., Kelmsnson P.M., Cordonnier-Pratt M.-M., Pratt L.H. The phytochrome gene family in tomato and the rapid differential evolution of this family in angiosperms. Molecular Biology and Evolution. 2000;17:362–373. doi: 10.1093/oxfordjournals.molbev.a026316. [DOI] [PubMed] [Google Scholar]
  2. APG III An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society. 2009;161:105–121. [Google Scholar]
  3. Baldwin B.G., Sanderson M.J. Age and rate of diversification of the Hawaiian silversword alliance (Compositae) Proceedings of the National Academy of Sciences USA. 1998;95:9402–9406. doi: 10.1073/pnas.95.16.9402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bartish I.V., Antonelli A., Richardson J.E., Swenson U. Vicariance or long-distance dispersal: historical biogeography of the pantropical subfamily Chrysophylloideae (Sapotaceae) Journal of Biogeography. 2011;38:177–190. [Google Scholar]
  5. Basinger J.F., Christophel D.C. Fossil flowers and leaves of the Ebenaceae from the Eocene of southern Australia. Canadian Journal of Botany. 1985;63:1825–1843. [Google Scholar]
  6. Bell C.D., Soltis D.E., Soltis P.S. The age and diversification of the angiosperms re-revisited. American Journal of Botany. 2010;97:1296–1303. doi: 10.3732/ajb.0900346. [DOI] [PubMed] [Google Scholar]
  7. Bennett M.D., Leitch I.J. Genome size evolution in plants. In: Gregory T.R., editor. The Evolution of the Genome. Elsevier; San Diego: 2005. pp. 90–151. [Google Scholar]
  8. Bennett, M.D., Leitch, I.J., 2010. Angiosperm DNA C-Values Database (Release 7.0, December 2010). <http://www.kew.org/cvalues/>.
  9. Bennett J.R., Mathews S. Phylogeny of the parasitic plant family Orobanchaceae inferred from phytochrome A1. American Journal of Botany. 2006;93:1039–1051. doi: 10.3732/ajb.93.7.1039. [DOI] [PubMed] [Google Scholar]
  10. Bremer K., Friis E.M., Bremer B. Molecular phylogenetic dating of asterid flowering plants shows early Cretaceous diversification. Systematic Biology. 2004;53:496–503. doi: 10.1080/10635150490445913. [DOI] [PubMed] [Google Scholar]
  11. Darriba D., Taboada G.L., Doallo R., Posada D. JModelTest 2: more models, new heuristics and parallel computing. Nature Methods. 2012;9:772. doi: 10.1038/nmeth.2109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Drummond A.J., Ho S.Y.W., Phillips M.J., Rambaut A. Relaxed phylogenetics and dating with confidence. Molecular Biology and Evolution. 2006;29:1969–1973. doi: 10.1371/journal.pbio.0040088. (PLoS Biology 4, 699–710) [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Drummond A.J., Suchard M.A., Xie D., Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution. 2012;29:1969–1973. doi: 10.1093/molbev/mss075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Duangjai S., Wallnöfer B., Samuel R., Munzinger J., Chase M.W. Generic delimitation and relationships in Ebenaceae sensu lato: evidence from six plastid DNA regions. American Journal of Botany. 2006;93:1808–1827. doi: 10.3732/ajb.93.12.1808. [DOI] [PubMed] [Google Scholar]
  15. Duangjai S., Samuel R., Munzinger J., Forest F., Wallnöfer B., Barfuss M.H.J., Fischer G., Chase M.W. A multi-locus plastid phylogenetic analysis of the pantropical genus Diospyros (Ebenaceae), with an emphasis on the radiation and biogeographic origins of the New Caledonian endemic species. Molecular Phylogenetics and Evolution. 2009;52:602–620. doi: 10.1016/j.ympev.2009.04.021. [DOI] [PubMed] [Google Scholar]
  16. Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Emshwiller E., Doyle J.J. Chloroplast-expressed glutamine synthetase (ncpGS): potential utility for phylogenetic studies with an example from Oxalis (Oxalidaceae) Molecular Phylogenetics and Evolution. 1999;12:310–319. doi: 10.1006/mpev.1999.0613. [DOI] [PubMed] [Google Scholar]
  18. Espeland M., Murienne J. Diversity dynamics in New Caledonia: towards the end of the museum model? BMC Evolutionary Biology. 2011;11:254. doi: 10.1186/1471-2148-11-254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Farris J.S., Källersjö M., Kluge A.G., Bult C. Testing significance of incongruence. Cladistics. 1994;10:315–319. [Google Scholar]
  20. Ferreira M.A.R., Suchard M.A. Bayesian analysis of elapsed times in continuous-time Markov chains. The Canadian Journal of Statistics. 2008;36:355–368. [Google Scholar]
  21. Forest F. Calibrating the Tree of Life: fossils, molecules and evolutionary timescales. Annals of Botany. 2009;104:789–794. doi: 10.1093/aob/mcp192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Galbraith D.W., Harkins K.R., Maddox J.M., Ayres N.M., Sharma D.P., Firoozabady E. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science. 1983;220:1049–1051. doi: 10.1126/science.220.4601.1049. [DOI] [PubMed] [Google Scholar]
  23. Gaudeul M., Rouhan G., Gardner M.F., Hollingsworth P.M. AFLP markers provide insights into the evolutionary relationships and diversification of New Caledonian Araucaria species (Araucariaceae) American Journal of Botany. 2012;99:68–81. doi: 10.3732/ajb.1100321. [DOI] [PubMed] [Google Scholar]
  24. Geeraerts A., Raeymaekers J.A.M., Vinckier S., Pletsers A., Smets E., Huysmans S. Systematic palynology in Ebenaceae with focus on Ebenoideae: morphological diversity and character evolution. Review of Palaeobotany and Palynology. 2009;153:336–353. [Google Scholar]
  25. Gernhard T. The conditioned reconstructed process. Journal of Theoretical Biology. 2008;253:769–788. doi: 10.1016/j.jtbi.2008.04.005. [DOI] [PubMed] [Google Scholar]
  26. Givnish T.J., Millam K.C., Berry P.E., Sytsma K.J. Phylogeny, adaptive radiation, and historical biogeography of Bromeliaceae inferred form ndhF sequence data. Aliso. 2007;23:3–26. [Google Scholar]
  27. Givnish T.J., Millam K.C., Mast A.R., Paterson T.B., Theim T.J., Hipp A.L., Henss J.M., Smith J.F., Wood K.R., Sytsma K.J. Origin, adaptive radiation and diversification of the Hawaiian lobeliads (Asterales: Campanulaceae) Proceedings of the Royal Society B. 2009;276 doi: 10.1098/rspb.2008.1204. 407–146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Givnish T.J., Barfuss M.H.J., Van Ee B., Riina R., Schulte K., Horres R., Gonsiska P.A., Jabaily R.S., Crayn D.M., Smith J.A.C., Winter K., Brown G.K., Evans T.M., Holst B.K., Luther H., Till W., Zizka G., Berry P.E., Sytsma K.J. Phylogeny, adaptive radiation, and historical biogeography in Bromeliacae: insight from an eight-locus plastid phylogeny. American Journal of Botany. 2011;98:872–895. doi: 10.3732/ajb.1000059. [DOI] [PubMed] [Google Scholar]
  29. Grandcolas P., Murienne J., Robillard T., Desutter-Grandcolas L., Jourdan H., Guilbert E., Deharveng L. New Caledonia: a very old Darwinian island? Philosophical Transactions of the Royal Society of London Series B, Biological Sciences. 2008;363:3309–3317. doi: 10.1098/rstb.2008.0122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Green A.F., Ramsey T.S., Ramsey J. Phylogeny and biogeography of ivies (Hedera spp., Araliaceae), a polyploid complex of woody vines. Systematic Botnay. 2011;36:1114–1127. [Google Scholar]
  31. Greilhuber J., Ebert I. Genome size variation in Pisum sativum. Genome. 1994;37:646–655. doi: 10.1139/g94-092. [DOI] [PubMed] [Google Scholar]
  32. Guindon S., Gascuel O. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology. 2003;52:696–704. doi: 10.1080/10635150390235520. [DOI] [PubMed] [Google Scholar]
  33. Guo Y.-P., Wang S.-Z., Vogl C., Ehrendorfer F. Nuclear and plastid haplotypes suggest rapid diploid and polyploid speciation in the N Hemisphere Achillea millefolium complex (Asteraceae) BMC Evolutionary Biology. 2012;12:2. doi: 10.1186/1471-2148-12-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hall T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series. 1999;41:95–98. [Google Scholar]
  35. Hasegawa M., Kishino H., Yano T.-A. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution. 1985;22:160–174. doi: 10.1007/BF02101694. [DOI] [PubMed] [Google Scholar]
  36. Hughes C., Eastwood R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. PNAS. 2006;103:10334–10339. doi: 10.1073/pnas.0601928103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Knope M.L., Morden C.W., Funk V.A., Fukami T. Area and the rapid radiation of Hawaiian Bidens (Asteraceae) Journal of Biogeography. 2012;39:1206–1216. [Google Scholar]
  38. Ladiges P.Y., Cantrill D. New Caledonia–Australian connections: biogeographic patterns and geology. Australian Systematic Botany. 2007;20:383–389. [Google Scholar]
  39. Leitch I.J. Genome size through the ages. Heredity. 2007;99:121–122. doi: 10.1038/sj.hdy.6800981. [DOI] [PubMed] [Google Scholar]
  40. Lowry P.P., II . Diversity, endemism and extinction in the flora of New Caledonia: a review. In: Peng C.F., Lowry P.P. II, editors. Rare, Threatened, and Endangered Floras of Asia and the Pacific Rim. Institute of Botany; Taipei, Taiwan: 1998. pp. 181–206. [Google Scholar]
  41. Magallón S. Using fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiosperms. Systematic Biology. 2010;59:384–399. doi: 10.1093/sysbio/syq027. [DOI] [PubMed] [Google Scholar]
  42. Mathews S., Donoghue M.J. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science. 1999;286:947–950. doi: 10.1126/science.286.5441.947. [DOI] [PubMed] [Google Scholar]
  43. Mathews S., Clements M.D., Beilstein M.A. A duplicate gene rooting of seed plants and the phylogenetic position of flowering plants. Philosophical Transaction of the Royal Society B Biological Sciences. 2010;365:383–395. doi: 10.1098/rstb.2009.0233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. McLoughlin S. The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany. 2001;49:271–300. [Google Scholar]
  45. Millán-Martínez M. Fossil record and age of the Asteridae. Botanical Reviews. 2010;76:83–135. [Google Scholar]
  46. Miller, M.A., Pfeiffer, W., Schwarz, T., 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, Louisiana, 14 November, 2010, pp. 1–8.
  47. Mittermeier R.A., Gil P.R., Hoffmann M., Pilgrim J., Brooks T., Mittermeier C.G., Lamoreux J., da Fonseca G.A.B. CEMEX; Mexico City: 2004. Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions. [Google Scholar]
  48. Moody M.L., Rieseberg L.H. Sorting through the chaff, nDNA gene trees for phylogenetic inference and hybrid identification of annual sunflowers (Helianthus sect. Helianthus) Molecular Phylogenetics and Evolution. 2012;64:145–155. doi: 10.1016/j.ympev.2012.03.012. [DOI] [PubMed] [Google Scholar]
  49. Morat P., Jaffré T., Tronchet F., Munzinger J., Pillon Y., Veillon J.-M., Chalopin M. Le référentiel taxonomique Florical et les caractéristiques de la flore vasculaire indigène de la Nouvelle-Calédonie. Adansonia. 2012;34:177–219. [Google Scholar]
  50. Murienne J. Testing biodiversity hypothesis in New Caledonia using phylogenetics. Journal of Biogeography. 2009;36:1433–1434. [Google Scholar]
  51. Murienne J., Grandcolas P., Piulachs M., Bellés X., D’Haese C., Legendre F., Pellens R., Guilbert E. Evolution on a shaky piece of Gondwana: is local endemism recent in New Caledonia? Cladistics. 2005;21:2–7. doi: 10.1111/j.1096-0031.2004.00042.x. [DOI] [PubMed] [Google Scholar]
  52. Murienne J., Guilbert E., Grandcolas P. Species’ diversity in the New Caledonian endemic genera Cephalidiosus and Nobarnus (Insecta: Heteroptera: Tingidae), an approach using phylogeny and species’ distribution modelling. Biological Journal of the Linnean Society. 2009;97:177–184. [Google Scholar]
  53. Myers N., Mittermeier R.A., Mittermeier C.G., da Fonseca G.A.B., Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853–858. doi: 10.1038/35002501. [DOI] [PubMed] [Google Scholar]
  54. Nattier R., Robillard T., Desutter-Grandcolas L., Couloux A., Grandcolas P. Older than New Caledonia emergence? A molecular phylogenetic study of the eneopterine crickets (Orthoptera: Grylloidea) Journal of Biogeography. 2011;38:2195–2209. [Google Scholar]
  55. Nie Z.-L., Wen J., Azuma H., Qui Y.-L., Sun H., Meng Y., Sun W.-B., Zimmer E.A. Phylogenetic and biogeographic complexity of Magnoliaceae in the Northern Hemisphere inferred from three nuclear data sets. Molecular Phylogenetics and Evolution. 2008;48:1027–1040. doi: 10.1016/j.ympev.2008.06.004. [DOI] [PubMed] [Google Scholar]
  56. Nixon K.C., Crepet W.L. Late cretaceous fossil flowers with ericalean affinity. American Journal of Botany. 1993;80:616–623. [Google Scholar]
  57. Otto F., Oldiges H., Göhde W., Jain V.K. Flow cytometric measurement of nuclear DNA content variations as a potential in vivo mutagenicity test. Cytometry. 1981;2:189–191. doi: 10.1002/cyto.990020311. [DOI] [PubMed] [Google Scholar]
  58. Parisod C., Alix K., Just J., Petit M., Sarilar V., Mhiri C., Ainouche M., Chalhoub B., Grandbastien M.A. Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytologist. 2009;186:37–45. doi: 10.1111/j.1469-8137.2009.03096.x. [DOI] [PubMed] [Google Scholar]
  59. Pelletier B. Geology of the New Caledonia region and its implications for the study of the New Caledonian biodiversity. In: Payri C., Richer de Forges B., editors. Compendium of marine species from New Caledonia, Documents Scientifiques et Techniques II4. Institut de Recherche pour le Développement Nouméa; 2006. pp. 17–30. [Google Scholar]
  60. Pellicer J., Fay M.F., Leitch I.J. The largest eukaryotic genome of them all? Botanical Journal of the Linnean Society. 2010;164:10–15. [Google Scholar]
  61. Petrov D.A. Evolution of genome size: new approaches to an old problem. Trends in Genetics. 2001;17:23–28. doi: 10.1016/s0168-9525(00)02157-0. [DOI] [PubMed] [Google Scholar]
  62. Pillon Y. Time and tempo of diversification in the flora of New Caledonia. Botanical Journal of the Linnean Society. 2012;170:288–298. [Google Scholar]
  63. Pillon Y., Hopkins H.C., Munzinger J., Amir H., Chase M.W. Cryptic species, gene recombination and hybridization in the genus Spiraeanthemum (Cunoniaceae) from New Caledonia. Botanical Journal of the Linnean Society. 2009;161:137–152. [Google Scholar]
  64. Pillon Y., Munzinger J., Amir H., Hopkins H.C., Chase M.W. Reticulate evolution on a mosaic of soils: diversification of the New Caledonian endemic genus Codia (Cunoniaceae) Molecular Ecology. 2009;18:2263–2275. doi: 10.1111/j.1365-294X.2009.04178.x. [DOI] [PubMed] [Google Scholar]
  65. Pillon Y., Munzinger J., Amir H., Lebrun M. Ultramafic soils and species sorting in the flora of New Caledonia. Journal of Ecology. 2010;98:1108–1116. [Google Scholar]
  66. Pillon Y., Johansen J., Sakishima T., Chamala S., Barbazuk W.B., Roalson E.H., Price D.K., Stacy E.A. Potential use of low-copy nuclear genes in DNA barcoding: a comparison with plastid genes in two Hawaiian plant radiations. BMC Evolutionary Biology. 2013;13:35. doi: 10.1186/1471-2148-13-35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Pirie M.D., Doyle J.A. Dating clades with fossils and molecules: the case of Annoaceae. Botanical Journal of the Linnean Society. 2012;169:84–116. [Google Scholar]
  68. Richardson J.E., Pennington R.T., Pennington T.D., Hollingsworth P.M. Rapid diversification of a species-rich genus of Neotropical rain forest trees. Science. 2001;293:2242–2245. doi: 10.1126/science.1061421. [DOI] [PubMed] [Google Scholar]
  69. Salard M., Avias J. Contribution à la connaissance de la flore fossile de la Nouvelle-Calédonie. Palaeontographica, Abteilung B, Paläophytologie. 1968;124:1–44. [Google Scholar]
  70. Silvestro D., Schnitzler J., Zizka G. A Bayesian framework to estimate diversification rates and their variation through time and space. BMC Evolutionary Biology. 2011;11:311–325. doi: 10.1186/1471-2148-11-311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. [DOI] [PubMed] [Google Scholar]
  72. Swenson U., Hill R.S., McLoughlin S. Biogeography of Nothofagus supports the sequence of Gondwana break-up. Taxon. 2001;50:1025–1041. [Google Scholar]
  73. Swofford, D.L., 2003. PAUP. Phylogenetic Analysis Using Parsimony ( and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.
  74. Tamura M., Tao R., Yonemori K., Utsunomiya N., Sugiura A. Ploidy level and genome size of several Diospyros species. Journal of the Japanese Horticultural Society. 1998;67:306–312. [Google Scholar]
  75. Tank D.C., Sang T. Phylogenetic utility of the glycerol-3-phosphate acyltransferase gene: evolution and implications in Paeonia (Paeoniaceae) Molecular Phylogenetics and Evolution. 2001;19:421–429. doi: 10.1006/mpev.2001.0931. [DOI] [PubMed] [Google Scholar]
  76. Tavaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences. 1986;17:57–86. [Google Scholar]
  77. Tel-Zur N., Abbo S., Myslabodsky D., Mizrahi Y. Modified CTAB procedure for DNA isolation from ephiphytic cacti of the genera Hylocereus and Selenicereus (Cactaceae) Plant Molecular Biology Reporter. 1999;17:249–254. [Google Scholar]
  78. Temsch E.M., Greilhuber J., Krisai R. Genome size in liverworts. Preslia. 2010;82:63–80. [Google Scholar]
  79. Weiss-Schneeweiss H., Villaseñor J.L., Stuessy T.F. Chromosome numbers, karyotypes, and evolution in Melampodium (Asteraceae) International Journal of Plant Science. 2009;170:1168–1182. [Google Scholar]
  80. White F. Twenty-two new and little known species of Diospyros (Ebenaceae) from New Caledonia with comments on section Maba. Bulletin du Muséum National d’Histoire naturelle 4ème série – Section B. Adansonia. 1992;2:179–222. [Google Scholar]
  81. White F. Muséum National d’Histoire Naturelle; Paris: 1993. Flore de la Nouvelle-Calédonie et Dépendances. 19. Ébénacées. [Google Scholar]
  82. Yockteng R., Nadot S. Phylogenetic relationships among Passiflora species based on the glutamine synthetase nuclear gene expressed in chloroplast (ncpGS) Molecular Phylogenetics and Evolution. 2004;31:379–396. doi: 10.1016/S1055-7903(03)00277-X. [DOI] [PubMed] [Google Scholar]
  83. Yule G.U. A mathematical theory of evolution, based on the conclusions of Dr. J.C. Willis, FRS. Philosophical Transactions of the Royal Society of London Series B. 1925;213:21–87. [Google Scholar]
  84. Zimmer E.A., Wen J. Using nuclear gene data for plant phylogenetics: progress and prospects. Molecular Phylogenetics and Evolution. 2012;65:774–785. doi: 10.1016/j.ympev.2012.07.015. [DOI] [PubMed] [Google Scholar]
  85. Zuckerkandl H., Pauling L. Evolutionary divergence and convergence in proteins. In: Bryson G., Vogel H.J., editors. Evolving Genes and Proteins. Academic Press; New York: 1965. pp. 97–166. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data 1

BEAST input file for the Bayesian analysis of the combined data set. For Bayesian analyses of the individual data sets we used the same settings as in the combined analysis for the respective data set.

mmc1.xml (51.6KB, xml)
Supplementary data 2

BEAST input file for dating analysis of the plastid marker data set from Bell et al. (2010) merged with our data.

mmc2.xml (82.1KB, xml)
Supplementary data 3

BEAST input file for dating analysis of the combined data set.

mmc3.xml (53.5KB, xml)

RESOURCES