Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Oct;82(20):7063–7067. doi: 10.1073/pnas.82.20.7063

H-2-incompatible bone marrow chimeras produce donor-H-2-restricted Ly-2 suppressor T-cell factor(s).

M Noguchi, K Onoé, M Ogasawara, K Iwabuchi, L Geng, K Ogasawara, R A Good, K Morikawa
PMCID: PMC391310  PMID: 2931723

Abstract

To study adaptive-differentiation phenomena of T lymphocytes, suppressor T-cell factors (TsF) produced by Ly-2+ splenic T cells from fully allogeneic mouse bone marrow chimeras were analyzed. AKR mice irradiated and reconstituted with B10 marrow cells (B10----AKR chimeras) produced an Ly-2+ TsF after hyperimmunization with sheep erythrocytes. The TsF suppressed primary antibody responses (to sheep erythrocytes) generated with spleen cells of mice of H-2b haplotype but not those of H-2k haplotype. Thus, this suppressor factor was donor-H-2-restricted. The immunoglobulin heavy chain variable region gene (Igh-V)-restricting element was not involved in this form of suppression. Similar results were obtained when TsF from B6----BALB/c and BALB/c----B6 chimeras were analyzed. The TsF from B10----AKR chimeras suppressed responses of B10.A(3R) and B10.A(5R) mice but not those of B10.A(4R). This finding showed that identity between the factor-producing cells and target spleen cells is required on the left-hand side of the E beta locus of the H-2 region and that the putative I-Jb locus is not involved in this form of suppression. The present results support the postulate that post-thymic differentiation in the presence of continued or repeated stimulation with antigen and donor-derived antigen-presenting cells generates donor-H-2-restricted T-cell clones that may predominate within the repertoire of the specific antigen being presented.

Full text

PDF
7063

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aizawa S., Sado T., Muto M., Kubo E. Immunology of fully H-2 incompatible bone marrow chimeras induced in specific-pathogen-free mice: evidence for generation of donor- and host-H-2 restricted helper and cytotoxic T cells. J Immunol. 1981 Dec;127(6):2426–2431. [PubMed] [Google Scholar]
  2. Bevan M. J. In a radiation chimaera, host H-2 antigens determine immune responsiveness of donor cytotoxic cells. Nature. 1977 Sep 29;269(5627):417–418. doi: 10.1038/269417a0. [DOI] [PubMed] [Google Scholar]
  3. Flood P., Yamauchi K., Gershon R. K. Analysis of the interactions between two molecules that are required for the expression of Ly-2 suppressor cell activity. Three different types of focusing events may be needed to deliver the suppressive signal. J Exp Med. 1982 Aug 1;156(2):361–371. doi: 10.1084/jem.156.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hayes C. E., Klyczek K. K., Krum D. P., Whitcomb R. M., Hullett D. A., Cantor H. Chromosome 4 Jt gene controls murine T cell surface I-J expression. Science. 1984 Feb 10;223(4636):559–563. doi: 10.1126/science.6607530. [DOI] [PubMed] [Google Scholar]
  5. Ikezawa Z., Baxevanis C. N., Arden B., Tada T., Waltenbaugh C. R., Nagy Z. A., Klein J. Evidence for two suppressor factors secreted by a single cell suggests a solution to the J-locus paradox. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6637–6641. doi: 10.1073/pnas.80.21.6637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Iwabuchi K., Onoé K., Ogasawara M., Yasumizu R., Morikawa K. Primary and secondary antibody responses to sheep erythrocytes of allogeneic bone marrow chimeras histocompatible at the left or right one-half of the H-2 complex. Hokkaido Igaku Zasshi. 1983 May;58(3):232–237. [PubMed] [Google Scholar]
  7. Katz D. H., Katz L. R., Bogowitz C. A., Skidmore B. J. Adaptive differentiation of murine lymphocytes. II. The thymic microenvironment does not restrict the cooperative partner cell preference of helper T cells differentiating in F1 leads to F1 thymic chimeras. J Exp Med. 1979 Jun 1;149(6):1360–1370. doi: 10.1084/jem.149.6.1360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Matzinger P., Mirkwood G. In a fully H-2 incompatible chimera, T cells of donor origin can respond to minor histocompatibility antigens in association with either donor or host H-2 type. J Exp Med. 1978 Jul 1;148(1):84–92. doi: 10.1084/jem.148.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Murphy D. B., Herzenberg L. A., Okumura K., Herzenberg L. A., McDevitt H. O. A new I subregion (I-J) marked by a locus (Ia-4) controlling surface determinants on suppressor T lymphocytes. J Exp Med. 1976 Sep 1;144(3):699–712. doi: 10.1084/jem.144.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Muto M., Sado T., Aizawa S., Kamisaku H., Kubo E. Bone marrow transplantation across the major histocompatibility barrier in specific-pathogen-free mice: effects of intact versus T cell-depleted bone marrow on the expression of anti-host reaction in the recipient spleens. J Immunol. 1981 Dec;127(6):2421–2425. [PubMed] [Google Scholar]
  11. Ohmori H., Yamamoto I. Mechanism of augmentation of the antibody response in vitro by 2-mercaptoethanol in murine lymphocytes. I. 2-Mercaptoethanol-induced stimulation of the uptake of cystine, an essential amino acid. J Exp Med. 1982 May 1;155(5):1277–1290. doi: 10.1084/jem.155.5.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Onoé K., Fernandes G., Good R. A. Humoral and cell-mediated immune responses in fully allogeneic bone marrow chimera in mice. J Exp Med. 1980 Jan 1;151(1):115–132. doi: 10.1084/jem.151.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Onoé K., Fernandes G., Shen F. W., Good R. A. Sequential changes of thymocyte surface antigens with presence or absence of graft-vs-host reaction following allogeneic bone marrow transplantation. Cell Immunol. 1982 Apr;68(2):207–219. doi: 10.1016/0008-8749(82)90106-x. [DOI] [PubMed] [Google Scholar]
  14. Onoé K., Yasumizu R., Oh-Ishi T., Kakinuma M., Good R. A., Fernandes G., Morikawa K. Specific elimination of the T lineage cells: effect of in vitro treatment with anti-Thy 1 serum without complement on the adoptive cell transfer system. J Immunol Methods. 1982 Mar 26;49(3):315–322. doi: 10.1016/0022-1759(82)90131-4. [DOI] [PubMed] [Google Scholar]
  15. Onoé K., Yasumizu R., Oh-Ishi T., Kakinuma M., Good R. A., Morikawa K. Restricted antibody formation to sheep erythrocytes of allogeneic bone marrow chimeras histoincompatible at the K end of the H-2 complex. J Exp Med. 1981 Apr 1;153(4):1009–1014. doi: 10.1084/jem.153.4.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Singer A., Hathcock K. S., Hodes R. J. Self recognition in allogeneic radiation bone marrow chimeras. A radiation-resistant host element dictates the self specificity and immune response gene phenotype of T-helper cells. J Exp Med. 1981 May 1;153(5):1286–1301. doi: 10.1084/jem.153.5.1286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Singer A., Kruisbeek A. M., Andrysiak P. M. T cell-accessory cell interactions that initiate allospecific cytotoxic T lymphocyte responses: existence of both Ia-restricted and Ia-unrestricted cellular interaction pathways. J Immunol. 1984 May;132(5):2199–2209. [PubMed] [Google Scholar]
  18. Steinmetz M., Minard K., Horvath S., McNicholas J., Srelinger J., Wake C., Long E., Mach B., Hood L. A molecular map of the immune response region from the major histocompatibility complex of the mouse. Nature. 1982 Nov 4;300(5887):35–42. doi: 10.1038/300035a0. [DOI] [PubMed] [Google Scholar]
  19. Stockinger H., Pfizenmaier K., Hardt C., Rodt H., Röllinghoff M., Wagner H. H-2 restriction as a consequence of intentional priming: T cells of fully allogeneic chimeric mice as well as of normal mice respond to foreign antigens in the context of H-2 determinants not encountered on thymic epithelial cells. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7390–7394. doi: 10.1073/pnas.77.12.7390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tada T., Taniguchi M., David C. S. Properties of the antigen-specific suppressive T-cell factor in the regulation of antibody response of the mouse. IV. Special subregion assignment of the gene(s) that codes for the suppressive T-cell factor in the H-2 histocompatibility complex. J Exp Med. 1976 Sep 1;144(3):713–725. doi: 10.1084/jem.144.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Taniguchi M., Tokuhisa T., Itoh T., Kanno M. Functional roles of two polypeptide chains that compose an antigen-specific suppressor T cell factor. J Exp Med. 1984 Apr 1;159(4):1096–1104. doi: 10.1084/jem.159.4.1096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yamauchi K., Flood P. M., Singer A., Gershon R. K. Homologies between cell interaction molecules controlled by major histocompatibility complex- and Igh-V-linked genes that T cells use for communication; both molecules undergo "adaptive" differentiation in the thymus. Eur J Immunol. 1983 Apr;13(4):285–291. doi: 10.1002/eji.1830130404. [DOI] [PubMed] [Google Scholar]
  23. Yamauchi K., Murphy D., Cantor H., Gershon R. K. Analysis of an antigen-specific H-2-restricted cell-free products(s) made by "I-J-" Ly-2 cells (Ly-2 TsF) that suppresses Ly-2 cell-depleted spleen cell activity. Eur J Immunol. 1981 Nov;11(11):913–918. doi: 10.1002/eji.1830111111. [DOI] [PubMed] [Google Scholar]
  24. Zinkernagel R. M., Callahan G. N., Althage A., Cooper S., Klein P. A., Klein J. On the thymus in the differentiation of "H-2 self-recognition" by T cells: evidence for dual recognition? J Exp Med. 1978 Mar 1;147(3):882–896. doi: 10.1084/jem.147.3.882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zinkernagel R. M., Sado T., Althage A., Kamisaku H. Anti-viral immune response of allogeneic irradiation bone marrow chimeras: cytotoxic T cell responsiveness depends upon H-2 combination and infectious agent. Eur J Immunol. 1984 Jan;14(1):14–23. doi: 10.1002/eji.1830140104. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES