Abstract
Measurement of light-dependent GTPase (EC 3.1.5.1) activity in a paradigm guided by electrophysiological experiments was used to examine the involvement of a guanine nucleotide binding protein in fly phototransduction. Cell-free membrane preparations of Musca eyes responded to blue light by a 10- to 20-fold increase in GTP-hydrolyzing activity. This light-dependent GTPase had a low Km for GTP (0.5 microM) and was effectively inhibited by guanosine (5'----O3)-1-thiotriphosphate and guanosine 5'-[beta-gamma-imino]triphosphate but not by adenosine 5'-[beta-gamma-imino]triphosphate and ATP. The action spectrum of GTPase activity measured with intense light resembled closely the photoequilibrium spectrum of metarhodopsin. After illumination with blue (less than 480 nm) light, which converted rhodopsin to metarhodopsin, the GTPase remained highly active for at least 60 min in the dark. Similarly, rhodopsin-to-metarhodopsin conversion in intact cells induced a prolonged excitation in the dark, known as the prolonged depolarizing afterpotential (PDA). The persistent GTPase activity (like the PDA) was suppressed to the low basal activity of the unilluminated membranes after conversion of metarhodopsin to rhodopsin with red light (greater than 570 nm), whereas during illumination with red light, some GTPase activity was maintained. The magnitude of the persistent GTPase activity in the dark, like the PDA, depended in a supralinear manner on the amount of pigment conversion. Thus, the dependence of GTPase activity of Musca membrane preparations on photopigment conversion resembles the induction and suppression of the PDA measured in intact photoreceptors of Musca. These findings indicate that a guanine nucleotide binding protein is part of the chain of events leading to both the generation of the receptor potential and the PDA.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bolsover S. R., Brown J. E. Injection of guanosine and adenosine nucleotides into Limulus ventral photoreceptor cells. J Physiol. 1982 Nov;332:325–342. doi: 10.1113/jphysiol.1982.sp014416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brown H. M., Cornwall M. C. Ionic mechanism of a quasi-stable depolarization in barnacle photoreceptor following red light. J Physiol. 1975 Jul;248(3):579–593. doi: 10.1113/jphysiol.1975.sp010989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calhoon R., Tsuda M., Ebrey T. G. A light-activated GTPase from octopus photoreceptors. Biochem Biophys Res Commun. 1980 Jun 30;94(4):1452–1457. doi: 10.1016/0006-291x(80)90582-3. [DOI] [PubMed] [Google Scholar]
- Cassel D., Selinger Z. Activation of turkey erythrocyte adenylate cyclase and blocking of the catecholamine-stimulated GTPase by guanosine 5'-(gamma-thio) triphosphate. Biochem Biophys Res Commun. 1977 Aug 8;77(3):868–873. doi: 10.1016/s0006-291x(77)80058-2. [DOI] [PubMed] [Google Scholar]
- Cassel D., Selinger Z. Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes. Biochim Biophys Acta. 1976 Dec 8;452(2):538–551. doi: 10.1016/0005-2744(76)90206-0. [DOI] [PubMed] [Google Scholar]
- Corson D. W., Fein A. Chemical excitation of Limulus photoreceptors. I. Phosphatase inhibitors induce discrete-wave production in the dark. J Gen Physiol. 1983 Nov;82(5):639–657. doi: 10.1085/jgp.82.5.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fein A., Corson D. W. Excitation of Limulus photoreceptors by vanadate and by a hydrolysis-resistant analog of guanosine triphosphate. Science. 1981 May 1;212(4494):555–557. doi: 10.1126/science.6782676. [DOI] [PubMed] [Google Scholar]
- Fung B. K., Hurley J. B., Stryer L. Flow of information in the light-triggered cyclic nucleotide cascade of vision. Proc Natl Acad Sci U S A. 1981 Jan;78(1):152–156. doi: 10.1073/pnas.78.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hillman P., Hochstein S., Minke B. Transduction in invertebrate photoreceptors: role of pigment bistability. Physiol Rev. 1983 Apr;63(2):668–772. doi: 10.1152/physrev.1983.63.2.668. [DOI] [PubMed] [Google Scholar]
- Kühn H., Bennett N., Michel-Villaz M., Chabre M. Interactions between photoexcited rhodopsin and GTP-binding protein: kinetic and stoichiometric analyses from light-scattering changes. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6873–6877. doi: 10.1073/pnas.78.11.6873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liebman P. A., Pugh E. N., Jr ATP mediates rapid reversal of cyclic GMP phosphodiesterase activation in visual receptor membranes. Nature. 1980 Oct 23;287(5784):734–736. doi: 10.1038/287734a0. [DOI] [PubMed] [Google Scholar]
- Minke B., Hochstein S., Hillman P. The kinetics of visual pigment systems. II. Application to measurements on a bistable pigment system. Biol Cybern. 1978 Jul 14;30(1):33–43. doi: 10.1007/BF00365481. [DOI] [PubMed] [Google Scholar]
- Minke B., Kirschfeld K. Fast electrical potentials arising from activation of metarhodopsin in the fly. J Gen Physiol. 1980 Apr;75(4):381–402. doi: 10.1085/jgp.75.4.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minke B. Light-induced reduction in excitation efficiency in the trp mutant of Drosophila. J Gen Physiol. 1982 Mar;79(3):361–385. doi: 10.1085/jgp.79.3.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minke B., Wu C., Pak W. L. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature. 1975 Nov 6;258(5530):84–87. doi: 10.1038/258084a0. [DOI] [PubMed] [Google Scholar]
- Saibil H. R., Michel-Villaz M. Squid rhodopsin and GTP-binding protein crossreact with vertebrate photoreceptor enzymes. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5111–5115. doi: 10.1073/pnas.81.16.5111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stryer L. Transducin and the cyclic GMP phosphodiesterase: amplifier proteins in vision. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):841–852. doi: 10.1101/sqb.1983.048.01.087. [DOI] [PubMed] [Google Scholar]
- Vandenberg C. A., Montal M. Light-regulated biochemical events in invertebrate photoreceptors. 1. Light-activated guanosinetriphosphatase, guanine nucleotide binding, and cholera toxin catalyzed labeling of squid photoreceptor membranes. Biochemistry. 1984 May 22;23(11):2339–2347. doi: 10.1021/bi00306a003. [DOI] [PubMed] [Google Scholar]
- Wheeler G. L., Bitensky M. W. A light-activated GTPase in vertebrate photoreceptors: regulation of light-activated cyclic GMP phosphodiesterase. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4238–4242. doi: 10.1073/pnas.74.10.4238. [DOI] [PMC free article] [PubMed] [Google Scholar]