Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jun 11;93(12):5753–5758. doi: 10.1073/pnas.93.12.5753

Stimulation of new bone formation by direct transfer of osteogenic plasmid genes.

J Fang 1, Y Y Zhu 1, E Smiley 1, J Bonadio 1, J P Rouleau 1, S A Goldstein 1, L K McCauley 1, B L Davidson 1, B J Roessler 1
PMCID: PMC39133  PMID: 8650165

Abstract

Degradable matrices containing expression plasmid DNA [gene-activated matrices (GAMs)] were implanted into segmental gaps created in the adult rat femur. Implantation of GAMs containing beta-galactosidase or luciferase plasmids led to DNA uptake and functional enzyme expression by repair cells (granulation tissue) growing into the gap. Implantation of a GAM containing either a bone morphogenetic protein-4 plasmid or a plasmid coding for a fragment of parathyroid hormone (amino acids 1-34) resulted in a biological response of new bone filling the gap. Finally, implantation of a two-plasmid GAM encoding bone morphogenetic protein-4 and the parathyroid hormone fragment, which act synergistically in vitro, caused new bone to form faster than with either factor alone. These studies demonstrate for the first time that repair cells (fibroblasts) in bone can be genetically manipulated in vivo. While serving as a useful tool to study the biology of repair fibroblasts and the wound healing response, the GAM technology may also have wide therapeutic utility.

Full text

PDF
5753

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahrens M., Ankenbauer T., Schröder D., Hollnagel A., Mayer H., Gross G. Expression of human bone morphogenetic proteins-2 or -4 in murine mesenchymal progenitor C3H10T1/2 cells induces differentiation into distinct mesenchymal cell lineages. DNA Cell Biol. 1993 Dec;12(10):871–880. doi: 10.1089/dna.1993.12.871. [DOI] [PubMed] [Google Scholar]
  2. Centrella M., Horowitz M. C., Wozney J. M., McCarthy T. L. Transforming growth factor-beta gene family members and bone. Endocr Rev. 1994 Feb;15(1):27–39. doi: 10.1210/edrv-15-1-27. [DOI] [PubMed] [Google Scholar]
  3. Chen Y. T., Holcomb C., Moore H. P. Expression and localization of two low molecular weight GTP-binding proteins, Rab8 and Rab10, by epitope tag. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6508–6512. doi: 10.1073/pnas.90.14.6508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cook S. D., Baffes G. C., Wolfe M. W., Sampath T. K., Rueger D. C., Whitecloud T. S., 3rd The effect of recombinant human osteogenic protein-1 on healing of large segmental bone defects. J Bone Joint Surg Am. 1994 Jun;76(6):827–838. doi: 10.2106/00004623-199406000-00006. [DOI] [PubMed] [Google Scholar]
  5. Dempster D. W., Cosman F., Parisien M., Shen V., Lindsay R. Anabolic actions of parathyroid hormone on bone. Endocr Rev. 1993 Dec;14(6):690–709. doi: 10.1210/edrv-14-6-690. [DOI] [PubMed] [Google Scholar]
  6. Erlebacher A., Filvaroff E. H., Gitelman S. E., Derynck R. Toward a molecular understanding of skeletal development. Cell. 1995 Feb 10;80(3):371–378. doi: 10.1016/0092-8674(95)90487-5. [DOI] [PubMed] [Google Scholar]
  7. Gailit J., Clark R. A. Wound repair in the context of extracellular matrix. Curr Opin Cell Biol. 1994 Oct;6(5):717–725. doi: 10.1016/0955-0674(94)90099-x. [DOI] [PubMed] [Google Scholar]
  8. Gitelman S. E., Kobrin M. S., Ye J. Q., Lopez A. R., Lee A., Derynck R. Recombinant Vgr-1/BMP-6-expressing tumors induce fibrosis and endochondral bone formation in vivo. J Cell Biol. 1994 Sep;126(6):1595–1609. doi: 10.1083/jcb.126.6.1595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harris S. E., Sabatini M., Harris M. A., Feng J. Q., Wozney J., Mundy G. R. Expression of bone morphogenetic protein messenger RNA in prolonged cultures of fetal rat calvarial cells. J Bone Miner Res. 1994 Mar;9(3):389–394. doi: 10.1002/jbmr.5650090314. [DOI] [PubMed] [Google Scholar]
  10. Horn N. A., Meek J. A., Budahazi G., Marquet M. Cancer gene therapy using plasmid DNA: purification of DNA for human clinical trials. Hum Gene Ther. 1995 May;6(5):565–573. doi: 10.1089/hum.1995.6.5-565. [DOI] [PubMed] [Google Scholar]
  11. Jones C. M., Lyons K. M., Hogan B. L. Involvement of Bone Morphogenetic Protein-4 (BMP-4) and Vgr-1 in morphogenesis and neurogenesis in the mouse. Development. 1991 Feb;111(2):531–542. doi: 10.1242/dev.111.2.531. [DOI] [PubMed] [Google Scholar]
  12. Katagiri T., Yamaguchi A., Komaki M., Abe E., Takahashi N., Ikeda T., Rosen V., Wozney J. M., Fujisawa-Sehara A., Suda T. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol. 1994 Dec;127(6 Pt 1):1755–1766. doi: 10.1083/jcb.127.6.1755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lyons K. M., Pelton R. W., Hogan B. L. Organogenesis and pattern formation in the mouse: RNA distribution patterns suggest a role for bone morphogenetic protein-2A (BMP-2A). Development. 1990 Aug;109(4):833–844. doi: 10.1242/dev.109.4.833. [DOI] [PubMed] [Google Scholar]
  14. Lyons K. M., Pelton R. W., Hogan B. L. Patterns of expression of murine Vgr-1 and BMP-2a RNA suggest that transforming growth factor-beta-like genes coordinately regulate aspects of embryonic development. Genes Dev. 1989 Nov;3(11):1657–1668. doi: 10.1101/gad.3.11.1657. [DOI] [PubMed] [Google Scholar]
  15. McCauley L. K., Beecher C. A., Melton M. E., Werkmeister J. R., Jüppner H., Abou-Samra A. B., Segre G. V., Rosol T. J. Transforming growth factor-beta1 regulates steady-state PTH/PTHrP receptor mRNA levels and PTHrP binding in ROS 17/2.8 osteosarcoma cells. Mol Cell Endocrinol. 1994 May;101(1-2):331–336. doi: 10.1016/0303-7207(94)90250-x. [DOI] [PubMed] [Google Scholar]
  16. Nakase T., Nomura S., Yoshikawa H., Hashimoto J., Hirota S., Kitamura Y., Oikawa S., Ono K., Takaoka K. Transient and localized expression of bone morphogenetic protein 4 messenger RNA during fracture healing. J Bone Miner Res. 1994 May;9(5):651–659. doi: 10.1002/jbmr.5650090510. [DOI] [PubMed] [Google Scholar]
  17. Orloff J. J., Ribaudo A. E., McKee R. L., Rosenblatt M., Stewart A. F. A pharmacological comparison of parathyroid hormone receptors in human bone and kidney. Endocrinology. 1992 Oct;131(4):1603–1611. doi: 10.1210/endo.131.4.1327716. [DOI] [PubMed] [Google Scholar]
  18. Ozkaynak E., Rueger D. C., Drier E. A., Corbett C., Ridge R. J., Sampath T. K., Oppermann H. OP-1 cDNA encodes an osteogenic protein in the TGF-beta family. EMBO J. 1990 Jul;9(7):2085–2093. doi: 10.1002/j.1460-2075.1990.tb07376.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reddi A. H. Bone and cartilage differentiation. Curr Opin Genet Dev. 1994 Oct;4(5):737–744. doi: 10.1016/0959-437x(94)90141-o. [DOI] [PubMed] [Google Scholar]
  20. Rosen V., Nove J., Song J. J., Thies R. S., Cox K., Wozney J. M. Responsiveness of clonal limb bud cell lines to bone morphogenetic protein 2 reveals a sequential relationship between cartilage and bone cell phenotypes. J Bone Miner Res. 1994 Nov;9(11):1759–1768. doi: 10.1002/jbmr.5650091113. [DOI] [PubMed] [Google Scholar]
  21. Sampath T. K., Maliakal J. C., Hauschka P. V., Jones W. K., Sasak H., Tucker R. F., White K. H., Coughlin J. E., Tucker M. M., Pang R. H. Recombinant human osteogenic protein-1 (hOP-1) induces new bone formation in vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiation in vitro. J Biol Chem. 1992 Oct 5;267(28):20352–20362. [PubMed] [Google Scholar]
  22. Sumner D. R., Turner T. M., Purchio A. F., Gombotz W. R., Urban R. M., Galante J. O. Enhancement of bone ingrowth by transforming growth factor-beta. J Bone Joint Surg Am. 1995 Aug;77(8):1135–1147. doi: 10.2106/00004623-199508000-00001. [DOI] [PubMed] [Google Scholar]
  23. Urist M. R. Bone: formation by autoinduction. Science. 1965 Nov 12;150(3698):893–899. doi: 10.1126/science.150.3698.893. [DOI] [PubMed] [Google Scholar]
  24. Wilson J. M., Grossman M., Thompson A. R., Lupassikis C., Rosenberg A., Potts J. T., Jr, Kronenberg H. M., Mulligan R. C., Nussbaum S. R. Somatic gene transfer in the development of an animal model for primary hyperparathyroidism. Endocrinology. 1992 May;130(5):2947–2954. doi: 10.1210/endo.130.5.1315263. [DOI] [PubMed] [Google Scholar]
  25. Wong M., Lawton T., Goetinck P. F., Kuhn J. L., Goldstein S. A., Bonadio J. Aggrecan core protein is expressed in membranous bone of the chick embryo. Molecular and biomechanical studies of normal and nanomelia embryos. J Biol Chem. 1992 Mar 15;267(8):5592–5598. [PubMed] [Google Scholar]
  26. Wozney J. M. The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev. 1992 Jun;32(2):160–167. doi: 10.1002/mrd.1080320212. [DOI] [PubMed] [Google Scholar]
  27. Yamaguchi A., Katagiri T., Ikeda T., Wozney J. M., Rosen V., Wang E. A., Kahn A. J., Suda T., Yoshiki S. Recombinant human bone morphogenetic protein-2 stimulates osteoblastic maturation and inhibits myogenic differentiation in vitro. J Cell Biol. 1991 May;113(3):681–687. doi: 10.1083/jcb.113.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yin W., Smiley E., Germiller J., Mecham R. P., Florer J. B., Wenstrup R. J., Bonadio J. Isolation of a novel latent transforming growth factor-beta binding protein gene (LTBP-3). J Biol Chem. 1995 Apr 28;270(17):10147–10160. doi: 10.1074/jbc.270.17.10147. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES