Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Nov;82(21):7462–7466. doi: 10.1073/pnas.82.21.7462

Functional mapping of the human cerebellum with positron emission tomography.

P T Fox, M E Raichle, W T Thach
PMCID: PMC391365  PMID: 3877309

Abstract

Alterations of local neuronal activity induced within the human cerebellum by tactile stimulation and voluntary movement were mapped with positron emission tomographic measurements of brain blood flow. Finger movements produced bilateral, parasagittal blood-flow increases in anterior, superior hemispheric cortex of the cerebellum. Responses to tactile finger stimulation were coextensive with responses to voluntary finger movements but were less intense. Saccadic eye movements produced midline blood-flow increases in the posterior vermis of the cerebellum. Positron emission tomography now permits investigation of functional-anatomical relations within the human cerebellum.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fox P. T., Fox J. M., Raichle M. E., Burde R. M. The role of cerebral cortex in the generation of voluntary saccades: a positron emission tomographic study. J Neurophysiol. 1985 Aug;54(2):348–369. doi: 10.1152/jn.1985.54.2.348. [DOI] [PubMed] [Google Scholar]
  2. Fox P. T., Perlmutter J. S., Raichle M. E. A stereotactic method of anatomical localization for positron emission tomography. J Comput Assist Tomogr. 1985 Jan-Feb;9(1):141–153. doi: 10.1097/00004728-198501000-00025. [DOI] [PubMed] [Google Scholar]
  3. Fox P. T., Raichle M. E. Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography. J Neurophysiol. 1984 May;51(5):1109–1120. doi: 10.1152/jn.1984.51.5.1109. [DOI] [PubMed] [Google Scholar]
  4. Frackowiak R. S., Lenzi G. L., Jones T., Heather J. D. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr. 1980 Dec;4(6):727–736. doi: 10.1097/00004728-198012000-00001. [DOI] [PubMed] [Google Scholar]
  5. HAMPSON J. L., HARRISON C. R., WOOLSEY C. N. Cerebro-cerebellar projections and the somatotopic localization of motor function in the cerebellum. Res Publ Assoc Res Nerv Ment Dis. 1952;30:299–316. [PubMed] [Google Scholar]
  6. Herscovitch P., Markham J., Raichle M. E. Brain blood flow measured with intravenous H2(15)O. I. Theory and error analysis. J Nucl Med. 1983 Sep;24(9):782–789. [PubMed] [Google Scholar]
  7. Huang S. C., Hoffman E. J., Phelps M. E., Kuhl D. E. Quantitation in positron emission computed tomography: 2. Effects of inaccurate attenuation correction. J Comput Assist Tomogr. 1979 Dec;3(6):804–814. [PubMed] [Google Scholar]
  8. LARSELL O. The cerebellum of the cat and the monkey. J Comp Neurol. 1953 Aug;99(1):135–199. doi: 10.1002/cne.900990110. [DOI] [PubMed] [Google Scholar]
  9. Llinás R., Wolfe J. W. Functional linkage between the electrical activity in the vermal cerebellar cortex and saccadic eye movements. Exp Brain Res. 1977 Aug 8;29(1):1–14. doi: 10.1007/BF00236872. [DOI] [PubMed] [Google Scholar]
  10. Merton P. A., Hill D. K., Morton H. B., Marsden C. D. Scope of a technique for electrical stimulation of human brain, spinal cord, and muscle. Lancet. 1982 Sep 11;2(8298):597–600. doi: 10.1016/s0140-6736(82)90670-5. [DOI] [PubMed] [Google Scholar]
  11. Raichle M. E., Martin W. R., Herscovitch P., Mintun M. A., Markham J. Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J Nucl Med. 1983 Sep;24(9):790–798. [PubMed] [Google Scholar]
  12. Raichle M. E. Positron emission tomography. Annu Rev Neurosci. 1983;6:249–267. doi: 10.1146/annurev.ne.06.030183.001341. [DOI] [PubMed] [Google Scholar]
  13. Reite M., Zimmerman J. Magnetic phenomena of the central nervous system. Annu Rev Biophys Bioeng. 1978;7:167–188. doi: 10.1146/annurev.bb.07.060178.001123. [DOI] [PubMed] [Google Scholar]
  14. Ron S., Robinson D. A. Eye movements evoked by cerebellar stimulation in the alert monkey. J Neurophysiol. 1973 Nov;36(6):1004–1022. doi: 10.1152/jn.1973.36.6.1004. [DOI] [PubMed] [Google Scholar]
  15. SNIDER R. S., ELDRED E. Cerebrocerebellar relationships in the monkey. J Neurophysiol. 1952 Jan;15(1):27–40. doi: 10.1152/jn.1952.15.1.27. [DOI] [PubMed] [Google Scholar]
  16. Yarowsky P. J., Ingvar D. H. Symposium summary. Neuronal activity and energy metabolism. Fed Proc. 1981 Jul;40(9):2353–2362. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES