Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Nov;82(22):7716–7720. doi: 10.1073/pnas.82.22.7716

Experimental diabetic neuropathy: impairment of slow transport with changes in axon cross-sectional area.

R Medori, L Autilio-Gambetti, S Monaco, P Gambetti
PMCID: PMC391404  PMID: 2415969

Abstract

Analysis of slow axonal transport in the sciatic and primary visual systems of rats with streptozotocin-induced diabetes of 4-6 weeks duration showed impairment of the transport of neurofilament subunits, tubulin, actin, and a 30- and a 60-kDa polypeptide in both systems. The degree of impairment was not uniform. Transport of polypeptide constituents of the slow component b, such as the 30- and 60-kDa polypeptides, appeared to be more severely affected than the transport of constituents of the slow component a, such as neurofilaments. Morphometric analysis of sciatic axons revealed a proximal increase and a distal decrease of axonal cross-sectional area. It is proposed that impairment of axoplasmic transport and changes of axonal size are related. Transport impairment results in a larger number of neurofilaments, microtubules, and other polypeptides in the proximal region of the axon, which increases in size, whereas fewer neurofilaments, microtubules, and other polypeptides reach the distal axons that show a size decrease. Such changes in axonal transport and area are likely to occur in other diabetic animal models and in human diabetes.

Full text

PDF
7716

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal M. K. Streptozotocin: mechanisms of action: proceedings of a workshop held on 21 June 1980, Washington, DC. FEBS Lett. 1980 Oct 20;120(1):1–3. doi: 10.1016/0014-5793(80)81031-3. [DOI] [PubMed] [Google Scholar]
  2. Bisby M. A. Axonal transport of labeled protein and regeneration rate in nerves of streptozocin-diabetic rats. Exp Neurol. 1980 Jul;69(1):74–84. doi: 10.1016/0014-4886(80)90144-2. [DOI] [PubMed] [Google Scholar]
  3. Bizzi A., Crane R. C., Autilio-Gambetti L., Gambetti P. Aluminum effect on slow axonal transport: a novel impairment of neurofilament transport. J Neurosci. 1984 Mar;4(3):722–731. doi: 10.1523/JNEUROSCI.04-03-00722.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown M. J., Asbury A. K. Diabetic neuropathy. Ann Neurol. 1984 Jan;15(1):2–12. doi: 10.1002/ana.410150103. [DOI] [PubMed] [Google Scholar]
  5. Brown M. J., Sumner A. J., Greene D. A., Diamond S. M., Asbury A. K. Distal neuropathy in experimental diabetes mellitus. Ann Neurol. 1980 Aug;8(2):168–178. doi: 10.1002/ana.410080207. [DOI] [PubMed] [Google Scholar]
  6. Brown M. R., Dyck P. J., McClearn G. E., Sima A. A., Powell H. C., Porte D., Jr Central and peripheral nervous system complications. Diabetes. 1982;31(Suppl 1 Pt 2):65–70. doi: 10.2337/diab.31.1.s65. [DOI] [PubMed] [Google Scholar]
  7. Campbell I. W., Fraser D. M., Ewing D. J., Baldwa V. S., Harrower A. B., Murray A., Neilson J. M., Clarke B. F. Peripheral and autonomic nerve function in diabetic ketoacidosis. Lancet. 1976 Jul 24;2(7978):167–169. doi: 10.1016/s0140-6736(76)92344-8. [DOI] [PubMed] [Google Scholar]
  8. Chihara E. Impairment of protein synthesis in the retinal tissue in diabetic rabbits: secondary reduction of fast axonal transport. J Neurochem. 1981 Jul;37(1):247–250. doi: 10.1111/j.1471-4159.1981.tb05316.x. [DOI] [PubMed] [Google Scholar]
  9. Chochinov R. H., Ullyot G. L., Moorhouse J. A. Sensory perception thresholds in patients with juvenile diabetes and their close relatives. N Engl J Med. 1972 Jun 8;286(23):1233–1237. doi: 10.1056/NEJM197206082862303. [DOI] [PubMed] [Google Scholar]
  10. Clements R. S., Jr Diabetic neuropathy--new concepts of its etiology. Diabetes. 1979 Jun;28(6):604–611. doi: 10.2337/diab.28.6.604. [DOI] [PubMed] [Google Scholar]
  11. ELIASSON S. G. NERVE CONDUCTION CHANGES IN EXPERIMENTAL DIABETES. J Clin Invest. 1964 Dec;43:2353–2358. doi: 10.1172/JCI105109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GILLIATT R. W., WILLISON R. G. Peripheral nerve conduction in diabetic neuropathy. J Neurol Neurosurg Psychiatry. 1962 Feb;25:11–18. doi: 10.1136/jnnp.25.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Greene D. A., De Jesus P. V., Jr, Winegrad A. I. Effects of insulin and dietary myoinositol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes. J Clin Invest. 1975 Jun;55(6):1326–1336. doi: 10.1172/JCI108052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Greene D. A. Metabolic abnormalities in diabetic peripheral nerve: relation to impaired function. Metabolism. 1983 Jul;32(7 Suppl 1):118–123. doi: 10.1016/s0026-0495(83)80024-9. [DOI] [PubMed] [Google Scholar]
  15. Gregersen G. Diabetic neuropathy: influence of age, sex, metabolic control, and duration of diabetes on motor conduction velocity. Neurology. 1967 Oct;17(10):972–980. doi: 10.1212/wnl.17.10.972. [DOI] [PubMed] [Google Scholar]
  16. Griffin J. W., Hoffman P. N., Clark A. W., Carroll P. T., Price D. L. Slow axonal transport of neurofilament proteins: impairment of beta,beta'-iminodipropionitrile administration. Science. 1978 Nov 10;202(4368):633–635. doi: 10.1126/science.81524. [DOI] [PubMed] [Google Scholar]
  17. Hirano A., Donnenfeld H., Sasaki S., Nakano I. Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 1984 Sep;43(5):461–470. doi: 10.1097/00005072-198409000-00001. [DOI] [PubMed] [Google Scholar]
  18. Hoffman P. N., Griffin J. W., Price D. L. Control of axonal caliber by neurofilament transport. J Cell Biol. 1984 Aug;99(2):705–714. doi: 10.1083/jcb.99.2.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hoffman P. N., Lasek R. J., Griffin J. W., Price D. L. Slowing of the axonal transport of neurofilament proteins during development. J Neurosci. 1983 Aug;3(8):1694–1700. doi: 10.1523/JNEUROSCI.03-08-01694.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jakobsen J. Axonal dwindling in early experimental diabetes. I. A study of cross sectioned nerves. Diabetologia. 1976 Dec;12(6):539–546. doi: 10.1007/BF01220629. [DOI] [PubMed] [Google Scholar]
  21. Jakobsen J. Axonal dwindling in early experimental diabetes. II. A study of isolated nerve fibres. Diabetologia. 1976 Dec;12(6):547–553. doi: 10.1007/BF01220630. [DOI] [PubMed] [Google Scholar]
  22. Jakobsen J., Brimijoin S., Sidenius P. Axonal transport in neuropathy. Muscle Nerve. 1983 Feb;6(2):164–166. doi: 10.1002/mus.880060214. [DOI] [PubMed] [Google Scholar]
  23. Jakobsen J. Early peripheral nerve abnormalities in diabetes: an animal model. Horm Metab Res Suppl. 1980;9:30–38. [PubMed] [Google Scholar]
  24. Jakobsen J., Sidenius P. Decreased axonal transport of structural proteins in streptozotocin diabetic rats. J Clin Invest. 1980 Aug;66(2):292–297. doi: 10.1172/JCI109856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Junod A., Lambert A. E., Stauffacher W., Renold A. E. Diabetogenic action of streptozotocin: relationship of dose to metabolic response. J Clin Invest. 1969 Nov;48(11):2129–2139. doi: 10.1172/JCI106180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lasek R. J. Axoplasmic transport of labeled proteins in rat ventral motoneurons. Exp Neurol. 1968 May;21(1):41–51. doi: 10.1016/0014-4886(68)90032-0. [DOI] [PubMed] [Google Scholar]
  27. Leiter E. H. Multiple low-dose streptozotocin-induced hyperglycemia and insulitis in C57BL mice: influence of inbred background, sex, and thymus. Proc Natl Acad Sci U S A. 1982 Jan;79(2):630–634. doi: 10.1073/pnas.79.2.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Like A. A., Rossini A. A. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science. 1976 Jul 30;193(4251):415–417. doi: 10.1126/science.180605. [DOI] [PubMed] [Google Scholar]
  29. Mayer J. H., Tomlinson D. R. Axonal transport of cholinergic transmitter enzymes in vagus and sciatic nerves of rats with acute experimental diabetes mellitus; correlation with motor nerve conduction velocity and effects of insulin. Neuroscience. 1983 Aug;9(4):951–957. doi: 10.1016/0306-4522(83)90284-1. [DOI] [PubMed] [Google Scholar]
  30. McCall A. L., Millington W. R., Wurtman R. J. Metabolic fuel and amino acid transport into the brain in experimental diabetes mellitus. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5406–5410. doi: 10.1073/pnas.79.17.5406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Monaco S., Autilio-Gambetti L., Zabel D., Gambetti P. Giant axonal neuropathy: acceleration of neurofilament transport in optic axons. Proc Natl Acad Sci U S A. 1985 Feb;82(3):920–924. doi: 10.1073/pnas.82.3.920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Moore S. A., Peterson R. G., Felten D. L., O'Connor B. L. A quantitative comparison of motor and sensory conduction velocities in short- and long-term streptozotocin- and alloxan-diabetic rats. J Neurol Sci. 1980 Oct;48(1):133–152. doi: 10.1016/0022-510x(80)90156-2. [DOI] [PubMed] [Google Scholar]
  33. Moore S. A., Peterson R. G., Felten D. L., O'Connor B. L. Ultrastructural axonal pathology in experimentally diabetic and aging control rats. Brain Res Bull. 1982 Mar;8(3):317–323. doi: 10.1016/0361-9230(82)90065-x. [DOI] [PubMed] [Google Scholar]
  34. Papasozomenos S. C., Autilio-Gambetti L., Gambetti P. Reorganization of axoplasmic organelles following beta, beta'-iminodipropionitrile administration. J Cell Biol. 1981 Dec;91(3 Pt 1):866–871. doi: 10.1083/jcb.91.3.866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rossini A. A., Mordes J. P., Gallina D. L., Like A. A. Hormonal and environmental factors in the pathogenesis of BB rat diabetes. Metabolism. 1983 Jul;32(7 Suppl 1):33–36. doi: 10.1016/s0026-0495(83)80008-0. [DOI] [PubMed] [Google Scholar]
  36. Schmidt R. E., Scharp D. W. Axonal dystrophy in experimental diabetic autonomic neuropathy. Diabetes. 1982 Sep;31(9):761–770. doi: 10.2337/diab.31.9.761. [DOI] [PubMed] [Google Scholar]
  37. Sharma A. K., Bajada S., Thomas P. K. Influence of streptozotocin-induced diabetes on myelinated nerve fibre maturation and on body growth in the rat. Acta Neuropathol. 1981;53(4):257–265. doi: 10.1007/BF00690367. [DOI] [PubMed] [Google Scholar]
  38. Sidenius P., Jakobsen J. Reversibility and preventability of the decrease in slow axonal transport velocity in experimental diabetes. Diabetes. 1982 Aug;31(8 Pt 1):689–693. doi: 10.2337/diab.31.8.689. [DOI] [PubMed] [Google Scholar]
  39. Sidenius P. The axonopathy of diabetic neuropathy. Diabetes. 1982 Apr;31(4 Pt 1):356–363. doi: 10.2337/diab.31.4.356. [DOI] [PubMed] [Google Scholar]
  40. Sima A. A. The development and structural characterization of the neuropathies in the spontaneously diabetic BB Wistar rat. Metabolism. 1983 Jul;32(7 Suppl 1):106–111. doi: 10.1016/s0026-0495(83)80022-5. [DOI] [PubMed] [Google Scholar]
  41. Spritz N. Nerve disease in diabetes mellitus. Med Clin North Am. 1978 Jul;62(4):787–798. doi: 10.1016/s0025-7125(16)31773-4. [DOI] [PubMed] [Google Scholar]
  42. Sugimura K., Windebank A. J., Natarajan V., Lambert E. H., Schmid H. H., Dyck P. J. Interstitial hyperosmolarity may cause axis cylinder shrinkage in streptozotocin diabetic nerve. J Neuropathol Exp Neurol. 1980 Nov;39(6):710–721. doi: 10.1097/00005072-198011000-00010. [DOI] [PubMed] [Google Scholar]
  43. Verma A., Bisht M. S., Ahuja G. K. Involvement of central nervous system in diabetes mellitus. J Neurol Neurosurg Psychiatry. 1984 Apr;47(4):414–416. doi: 10.1136/jnnp.47.4.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Vitadello M., Couraud J. Y., Hässig R., Gorio A., Di Giamberardino L. Axonal transport of acetylcholinesterase in the diabetic mutant mouse. Exp Neurol. 1983 Oct;82(1):143–147. doi: 10.1016/0014-4886(83)90249-2. [DOI] [PubMed] [Google Scholar]
  45. Vlassara H., Brownlee M., Cerami A. Excessive nonenzymatic glycosylation of peripheral and central nervous system myelin components in diabetic rats. Diabetes. 1983 Jul;32(7):670–674. doi: 10.2337/diab.32.7.670. [DOI] [PubMed] [Google Scholar]
  46. Vlassara H., Brownlee M., Cerami A. Nonenzymatic glycosylation of peripheral nerve protein in diabetes mellitus. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5190–5192. doi: 10.1073/pnas.78.8.5190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Williams S. K., Howarth N. L., Devenny J. J., Bitensky M. W. Structural and functional consequences of increased tubulin glycosylation in diabetes mellitus. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6546–6550. doi: 10.1073/pnas.79.21.6546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zimmerman I. R., Karnes J. L., O'Brien P. C., Dyck P. J. Imaging system for nerve and fiber tract morphometry: components, approaches, performance, and results. J Neuropathol Exp Neurol. 1980 Jul;39(4):409–419. doi: 10.1097/00005072-198007000-00002. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES