Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Dec 4;70(Pt 1):o1–o2. doi: 10.1107/S1600536813032224

Ethyl 6-methyl-2-oxo-4-[4-(1H-tetra­zol-5-yl)phen­yl]-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate–di­methyl­formamide–water (2/1/1)

Hua-Yong Ouyang a,*, Yi-Qi Chang b, Lu Zhao b
PMCID: PMC3914044  PMID: 24526960

Abstract

The asymmetric unit of the title compound, 2C15H16N6O3·C3H7NO·H2O, contains two independent ethyl 6-methyl-2-oxo-4-[4-(1H-tetra­zol-5-yl)phen­yl]-1,2,3,4-tetra­hydro­pyrim­id­ine-5-carboxyl­ate mol­ecules, in which the dihedral angles between the tetra­zole and benzene rings are 20.54 (12) and 12.13 (12)°. An intra­molecular C—H⋯O hydrogen bond occurs in each mol­ecule. In the crystal, N—H⋯O, N—H⋯N, O—H⋯O and O—H⋯N hydrogen bonds, as well as weak C—H⋯O and C—H⋯N hydrogen bonds, link the mol­ecules into a three-dimensional supra­molecular architecture. π–π stacking is also observed between parallel tetra­zole rings of adjacent mol­ecules, the centroid–centroid distance being 3.482 (6) Å.

Related literature  

For applications of hydro­pyrimidine derivatives and related compounds, see: Atwal et al. (1990); Kappe & Stadler (2004). graphic file with name e-70-000o1-scheme1.jpg

Experimental  

Crystal data  

  • 2C15H16N6O3·C3H7NO·H2O

  • M r = 747.79

  • Triclinic, Inline graphic

  • a = 10.198 (2) Å

  • b = 13.262 (3) Å

  • c = 13.771 (3) Å

  • α = 81.14 (3)°

  • β = 73.32 (3)°

  • γ = 81.14 (3)°

  • V = 1750.9 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.20 mm

Data collection  

  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.832, T max = 1.000

  • 18496 measured reflections

  • 7997 independent reflections

  • 5573 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.157

  • S = 1.12

  • 7997 reflections

  • 487 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813032224/xu5754sup1.cif

e-70-000o1-sup1.cif (27.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813032224/xu5754Isup2.hkl

e-70-000o1-Isup2.hkl (391.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536813032224/xu5754Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O1W 0.86 1.80 2.646 (3) 170
N9—H9A⋯O7 0.86 1.82 2.683 (3) 176
N10—H10B⋯O2 0.86 1.98 2.801 (2) 160
N11—H11B⋯N2i 0.86 2.26 3.014 (3) 147
N12—H12A⋯O1 0.86 2.04 2.884 (2) 165
N13—H13B⋯O7ii 0.86 2.44 3.176 (3) 144
O1W—H1WA⋯N8ii 0.85 2.17 2.985 (3) 160
O1W—H1WB⋯O1iii 0.85 2.01 2.677 (2) 135
C5—H5D⋯O3 0.96 2.07 2.817 (3) 133
C16—H16A⋯O5 0.96 2.03 2.781 (3) 133
C26—H26A⋯O7 0.93 2.59 3.431 (3) 151
C32—H32A⋯N3iv 0.96 2.53 3.463 (4) 164
C33—H33A⋯N3iv 1.00 2.53 3.506 (3) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

1. Comment

3,4-Dihydropyimidin-2(1H)-ones have shown good drug activity (Atwal et al., 1990; Kappe & Stadler, 2004). The tetrazoles have been showed that analogs of biologically active carboxylic acids in which the carboxyl group is replaced by a 5-tetrazolyl group might interfere with the normal utilization of the respective carboxylic acids. The Biginelli derivative was obtained from p-cyanobenzaldehyde, that was used to yield tetrazole derivative. Here we report the synthesis and crystal structure of the title compound (Fig. 1).

The bond distances and bond angles in the title compound agree very well with the corresponding distances and angles reported for a closely related compound. There are two biginelli derivatives and two solvate molecules in an asymmetric unit. The inter-molecular N–H···O and C–H···O hydrogen bonds link the compound to two-dimensional structure (Table 1), in which they may be effective in the stabilization of the structure. π-π contact between the tetrazole rings, Cg1-Cg1i [symmetry code: (i) -x, 1-y, -z, where Cg1 and Cg1i are centroids of the rings (N2-C15)] may further stabilize the structure, centroid-centroid distance of 3.482 (6) Å.

2. Experimental

Cyanobenzaldehyd and ethyl acetoacetate and urea (1:1:1) was added to round-bottom flask without solvent under nitrogen. The temperature was raised to 80°C in one hour gradually and the mixture was stirred at this temperature for 12 h. The system was treated with 30 ml of ethanol 95% and cooled. The precipitate was filtered and washed with a small amount of ethanol 95%. The above-mentioned compound (10 mmol) was added to sodium azide (15 mmol) and ammonia chloride (12 mmol) with DMF solvent. The temperature was raised to 115°C in one hour gradually and the mixture was stirred at this temperature for 36 h. The system was treated with 30 ml of water and cooled. The precipitate was filtered at pH 3. Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of a solution of the title compound in DMF/water at room temperature

3. Refinement

H-atoms bonded to the C-atoms were positioned geometrically and refined using a riding model with C—H = 0.93–1.00 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others. H-atoms bonded to the N-atoms and O-atom were located from a difference Fourier map and refined in riding mode with O—H = 0.85 and N—H 0.86 Å, Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

Perspective structure of the title compound, showing the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the a axis showing the hydrogen bondings network.

Crystal data

2C15H16N6O3·C3H7NO·H2O Z = 2
Mr = 747.79 F(000) = 788
Triclinic, P1 Dx = 1.418 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.198 (2) Å Cell parameters from 7997 reflections
b = 13.262 (3) Å θ = 2.6–27.5°
c = 13.771 (3) Å µ = 0.11 mm1
α = 81.14 (3)° T = 293 K
β = 73.32 (3)° Prism, colorless
γ = 81.14 (3)° 0.40 × 0.30 × 0.20 mm
V = 1750.9 (6) Å3

Data collection

Rigaku Mercury2 diffractometer 7997 independent reflections
Radiation source: fine-focus sealed tube 5573 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 3.1°
CCD_Profile_fitting scans h = −13→13
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −17→17
Tmin = 0.832, Tmax = 1.000 l = −17→17
18496 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157 H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.4646P] where P = (Fo2 + 2Fc2)/3
7997 reflections (Δ/σ)max = 0.011
487 parameters Δρmax = 0.38 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.0641 (2) 0.12944 (14) 0.48373 (14) 0.0307 (4)
C2 0.0311 (2) 0.12423 (15) 0.37903 (14) 0.0307 (4)
H2A 0.0349 0.0553 0.3602 0.037*
C3 0.1996 (2) 0.18600 (15) 0.44688 (15) 0.0328 (4)
C4 −0.0284 (2) 0.16860 (15) 0.55451 (15) 0.0323 (4)
C6 −0.1986 (2) 0.09564 (15) 0.50272 (16) 0.0347 (4)
C7 −0.3396 (2) 0.02727 (19) 0.42842 (19) 0.0472 (6)
H7A −0.4063 0.0881 0.4305 0.057*
H7B −0.3708 −0.0194 0.4896 0.057*
C8 −0.3256 (3) −0.0229 (2) 0.3366 (2) 0.0636 (7)
H8A −0.4132 −0.0422 0.3382 0.095*
H8B −0.2597 −0.0831 0.3355 0.095*
H8C −0.2948 0.0240 0.2766 0.095*
C9 −0.01594 (19) 0.20105 (15) 0.30001 (14) 0.0293 (4)
C10 −0.0476 (2) 0.30276 (16) 0.31468 (15) 0.0374 (5)
H10A −0.0421 0.3237 0.3747 0.045*
C11 −0.0868 (2) 0.37322 (16) 0.24300 (15) 0.0380 (5)
H11A −0.1084 0.4419 0.2543 0.046*
C12 −0.0948 (2) 0.34373 (15) 0.15389 (14) 0.0317 (4)
C13 −0.0661 (2) 0.24207 (16) 0.13965 (15) 0.0397 (5)
H13A −0.0735 0.2209 0.0803 0.048*
C14 −0.0268 (2) 0.17167 (16) 0.21199 (15) 0.0381 (5)
H14A −0.0071 0.1027 0.2014 0.046*
C15 −0.1364 (2) 0.41983 (16) 0.07781 (15) 0.0331 (4)
C16 0.5826 (2) 0.33833 (18) 0.43776 (16) 0.0440 (5)
H16A 0.6658 0.3705 0.4199 0.066*
H16B 0.5233 0.3729 0.3970 0.066*
H16C 0.6048 0.2676 0.4256 0.066*
C17 0.5117 (2) 0.34458 (15) 0.54674 (15) 0.0330 (4)
C18 0.2936 (2) 0.31894 (15) 0.66511 (15) 0.0336 (4)
C19 0.4688 (2) 0.38080 (16) 0.72315 (15) 0.0339 (4)
H19A 0.4668 0.4463 0.7485 0.041*
C20 0.5511 (2) 0.38809 (15) 0.61304 (15) 0.0337 (4)
C21 0.6726 (2) 0.44166 (16) 0.58067 (18) 0.0396 (5)
C22 0.8083 (2) 0.53775 (19) 0.6345 (2) 0.0538 (6)
H22A 0.7941 0.5882 0.6817 0.065*
H22B 0.8268 0.5735 0.5659 0.065*
C23 0.9280 (3) 0.4622 (2) 0.6440 (2) 0.0610 (7)
H23A 1.0084 0.4971 0.6298 0.091*
H23B 0.9432 0.4131 0.5964 0.091*
H23C 0.9102 0.4273 0.7122 0.091*
C24 0.5315 (2) 0.29673 (15) 0.78896 (15) 0.0327 (4)
C25 0.5135 (2) 0.19572 (17) 0.79301 (18) 0.0419 (5)
H25A 0.4583 0.1785 0.7563 0.050*
C26 0.5750 (2) 0.12007 (17) 0.84981 (17) 0.0426 (5)
H26A 0.5612 0.0520 0.8515 0.051*
C27 0.6568 (2) 0.14369 (16) 0.90431 (15) 0.0357 (5)
C28 0.6745 (2) 0.24440 (18) 0.90086 (17) 0.0445 (5)
H28A 0.7301 0.2617 0.9373 0.053*
C29 0.6123 (2) 0.31926 (17) 0.84517 (17) 0.0431 (5)
H29A 0.6246 0.3874 0.8450 0.052*
C30 0.7271 (2) 0.06657 (17) 0.96436 (16) 0.0402 (5)
C31 0.4547 (3) −0.2117 (3) 0.7892 (2) 0.0740 (9)
H31A 0.4796 −0.1429 0.7727 0.111*
H31B 0.3594 −0.2101 0.8269 0.111*
H31C 0.4691 −0.2420 0.7274 0.111*
C32 0.5170 (4) −0.3773 (2) 0.8813 (3) 0.0850 (10)
H32A 0.5786 −0.4086 0.9214 0.127*
H32B 0.5345 −0.4125 0.8222 0.127*
H32C 0.4235 −0.3816 0.9214 0.127*
C33 0.6262 (3) −0.22938 (19) 0.8775 (2) 0.0549 (6)
H33A 0.6724 −0.2820 0.9215 0.066*
N1 0.5385 (2) −0.27157 (15) 0.84984 (16) 0.0497 (5)
N2 −0.2044 (2) 0.51006 (14) 0.09321 (14) 0.0452 (5)
N3 −0.2227 (2) 0.55284 (16) 0.00233 (16) 0.0542 (5)
N4 −0.1683 (2) 0.49185 (16) −0.06570 (15) 0.0516 (5)
N5 −0.11397 (19) 0.40810 (14) −0.01895 (13) 0.0401 (4)
H5A −0.0709 0.3546 −0.0473 0.048*
N6 0.7876 (2) 0.08564 (17) 1.03020 (16) 0.0591 (6)
N7 0.8391 (3) −0.0052 (2) 1.06887 (18) 0.0707 (7)
N8 0.8126 (2) −0.07778 (18) 1.02923 (17) 0.0621 (6)
N9 0.7422 (2) −0.03366 (15) 0.96288 (15) 0.0500 (5)
H9A 0.7116 −0.0654 0.9254 0.060*
N10 0.39147 (17) 0.30075 (13) 0.57831 (13) 0.0363 (4)
H10B 0.3776 0.2594 0.5408 0.044*
N11 0.32924 (17) 0.36679 (13) 0.72897 (13) 0.0364 (4)
H11B 0.2645 0.3915 0.7777 0.044*
N12 0.09736 (17) 0.20394 (13) 0.53140 (12) 0.0354 (4)
H12A 0.1120 0.2398 0.5734 0.042*
N13 0.16843 (17) 0.13960 (13) 0.37938 (12) 0.0351 (4)
H13B 0.2358 0.1165 0.3314 0.042*
O1 0.17888 (14) 0.29226 (12) 0.68075 (11) 0.0411 (4)
O2 0.31418 (15) 0.21023 (12) 0.43537 (11) 0.0430 (4)
O3 −0.29294 (17) 0.10389 (15) 0.57646 (13) 0.0583 (5)
O4 −0.20729 (15) 0.05470 (12) 0.42274 (11) 0.0425 (4)
O5 0.75258 (19) 0.44626 (16) 0.49888 (14) 0.0670 (6)
O6 0.68567 (16) 0.48804 (12) 0.65585 (12) 0.0468 (4)
O7 0.6507 (2) −0.14120 (13) 0.85083 (15) 0.0659 (5)
O1W 0.0354 (2) 0.25890 (15) −0.12360 (13) 0.0753 (6)
H1WA 0.0624 0.2107 −0.0829 0.113*
H1WB 0.1049 0.2824 −0.1668 0.113*
C5 −0.1111 (2) 0.17917 (19) 0.66052 (16) 0.0464 (6)
H5D −0.1977 0.1530 0.6722 0.070*
H5E −0.1272 0.2504 0.6713 0.070*
H5B −0.0621 0.1410 0.7070 0.070*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0338 (11) 0.0293 (10) 0.0280 (10) −0.0028 (8) −0.0087 (8) −0.0010 (8)
C2 0.0338 (10) 0.0317 (10) 0.0286 (10) −0.0053 (8) −0.0100 (8) −0.0049 (8)
C3 0.0350 (11) 0.0341 (10) 0.0299 (10) −0.0044 (8) −0.0098 (9) −0.0028 (8)
C4 0.0360 (11) 0.0308 (10) 0.0291 (10) −0.0041 (8) −0.0081 (8) −0.0017 (8)
C6 0.0390 (12) 0.0329 (10) 0.0327 (10) −0.0062 (9) −0.0106 (9) −0.0013 (8)
C7 0.0404 (13) 0.0482 (13) 0.0601 (15) −0.0156 (10) −0.0219 (11) −0.0013 (11)
C8 0.0693 (18) 0.0600 (17) 0.0775 (19) −0.0116 (14) −0.0409 (16) −0.0117 (14)
C9 0.0290 (10) 0.0326 (10) 0.0273 (9) −0.0072 (8) −0.0076 (8) −0.0030 (8)
C10 0.0505 (13) 0.0365 (11) 0.0304 (10) −0.0063 (9) −0.0165 (9) −0.0077 (9)
C11 0.0514 (13) 0.0313 (10) 0.0338 (11) −0.0018 (9) −0.0155 (10) −0.0071 (9)
C12 0.0309 (10) 0.0371 (11) 0.0279 (9) −0.0061 (8) −0.0089 (8) −0.0023 (8)
C13 0.0544 (14) 0.0416 (12) 0.0271 (10) −0.0062 (10) −0.0146 (10) −0.0088 (9)
C14 0.0530 (13) 0.0311 (10) 0.0321 (10) −0.0035 (9) −0.0130 (10) −0.0074 (9)
C15 0.0329 (11) 0.0385 (11) 0.0285 (10) −0.0057 (9) −0.0084 (8) −0.0034 (8)
C16 0.0414 (13) 0.0534 (14) 0.0369 (11) −0.0098 (10) −0.0048 (10) −0.0113 (10)
C17 0.0319 (11) 0.0304 (10) 0.0361 (11) −0.0013 (8) −0.0084 (9) −0.0062 (8)
C18 0.0306 (11) 0.0362 (11) 0.0333 (10) −0.0001 (8) −0.0088 (9) −0.0057 (9)
C19 0.0331 (11) 0.0343 (10) 0.0377 (11) −0.0041 (8) −0.0109 (9) −0.0118 (9)
C20 0.0324 (11) 0.0322 (10) 0.0364 (11) −0.0027 (8) −0.0093 (9) −0.0050 (8)
C21 0.0384 (12) 0.0371 (11) 0.0455 (13) −0.0070 (9) −0.0132 (11) −0.0055 (10)
C22 0.0470 (14) 0.0442 (13) 0.0767 (18) −0.0180 (11) −0.0163 (13) −0.0141 (12)
C23 0.0523 (16) 0.0581 (16) 0.082 (2) −0.0135 (12) −0.0277 (14) −0.0097 (14)
C24 0.0299 (10) 0.0363 (11) 0.0329 (10) −0.0028 (8) −0.0065 (8) −0.0117 (9)
C25 0.0459 (13) 0.0396 (12) 0.0494 (13) −0.0081 (10) −0.0242 (11) −0.0082 (10)
C26 0.0500 (14) 0.0337 (11) 0.0491 (13) −0.0099 (10) −0.0176 (11) −0.0068 (10)
C27 0.0364 (11) 0.0395 (11) 0.0293 (10) −0.0007 (9) −0.0056 (9) −0.0086 (9)
C28 0.0532 (14) 0.0455 (13) 0.0456 (13) −0.0081 (10) −0.0259 (11) −0.0113 (10)
C29 0.0547 (14) 0.0360 (11) 0.0465 (13) −0.0070 (10) −0.0218 (11) −0.0113 (10)
C30 0.0415 (12) 0.0450 (13) 0.0320 (11) −0.0004 (10) −0.0062 (9) −0.0097 (9)
C31 0.0593 (18) 0.107 (3) 0.0577 (17) −0.0001 (17) −0.0247 (15) −0.0083 (17)
C32 0.086 (2) 0.0555 (18) 0.129 (3) −0.0184 (16) −0.043 (2) −0.0201 (19)
C33 0.0670 (17) 0.0409 (14) 0.0644 (16) −0.0042 (12) −0.0321 (14) −0.0041 (12)
N1 0.0499 (12) 0.0497 (12) 0.0537 (12) −0.0019 (9) −0.0186 (10) −0.0142 (10)
N2 0.0537 (12) 0.0418 (11) 0.0399 (10) 0.0044 (9) −0.0178 (9) −0.0036 (8)
N3 0.0645 (14) 0.0504 (12) 0.0478 (12) 0.0087 (10) −0.0249 (11) −0.0027 (10)
N4 0.0600 (13) 0.0545 (13) 0.0389 (11) 0.0022 (10) −0.0207 (10) 0.0042 (10)
N5 0.0455 (11) 0.0437 (10) 0.0306 (9) −0.0004 (8) −0.0130 (8) −0.0023 (8)
N6 0.0727 (15) 0.0600 (14) 0.0522 (12) 0.0076 (11) −0.0332 (12) −0.0136 (11)
N7 0.0852 (18) 0.0739 (17) 0.0538 (14) 0.0153 (13) −0.0335 (13) −0.0061 (12)
N8 0.0703 (16) 0.0570 (14) 0.0528 (13) 0.0094 (11) −0.0209 (12) 0.0040 (11)
N9 0.0605 (13) 0.0434 (11) 0.0453 (11) −0.0013 (9) −0.0166 (10) −0.0034 (9)
N10 0.0334 (9) 0.0421 (10) 0.0353 (9) −0.0072 (7) −0.0057 (8) −0.0140 (8)
N11 0.0273 (9) 0.0464 (10) 0.0361 (9) 0.0010 (7) −0.0062 (7) −0.0162 (8)
N12 0.0353 (9) 0.0434 (10) 0.0307 (9) −0.0097 (8) −0.0076 (7) −0.0114 (8)
N13 0.0295 (9) 0.0462 (10) 0.0298 (8) −0.0010 (7) −0.0070 (7) −0.0107 (8)
O1 0.0282 (8) 0.0599 (10) 0.0366 (8) −0.0082 (7) −0.0067 (6) −0.0106 (7)
O2 0.0329 (8) 0.0580 (10) 0.0408 (8) −0.0118 (7) −0.0081 (7) −0.0110 (7)
O3 0.0405 (10) 0.0812 (13) 0.0524 (10) −0.0202 (9) 0.0033 (8) −0.0228 (9)
O4 0.0410 (9) 0.0513 (9) 0.0401 (8) −0.0168 (7) −0.0134 (7) −0.0043 (7)
O5 0.0564 (12) 0.0963 (15) 0.0508 (11) −0.0395 (11) 0.0006 (9) −0.0144 (10)
O6 0.0430 (9) 0.0453 (9) 0.0578 (10) −0.0151 (7) −0.0123 (8) −0.0157 (8)
O7 0.0874 (14) 0.0418 (10) 0.0728 (13) −0.0136 (9) −0.0276 (11) −0.0024 (9)
O1W 0.0929 (15) 0.0643 (12) 0.0405 (10) 0.0199 (11) 0.0065 (10) 0.0026 (9)
C5 0.0467 (13) 0.0597 (15) 0.0323 (11) −0.0137 (11) −0.0028 (10) −0.0115 (10)

Geometric parameters (Å, º)

C1—C4 1.331 (3) C22—O6 1.438 (3)
C1—C6 1.449 (3) C22—C23 1.479 (4)
C1—C2 1.494 (3) C22—H22A 0.9700
C2—N13 1.448 (2) C22—H22B 0.9700
C2—C9 1.503 (3) C23—H23A 0.9600
C2—H2A 0.9800 C23—H23B 0.9600
C3—O2 1.219 (2) C23—H23C 0.9600
C3—N13 1.323 (3) C24—C25 1.370 (3)
C3—N12 1.346 (3) C24—C29 1.371 (3)
C4—N12 1.367 (3) C25—C26 1.363 (3)
C4—C5 1.477 (3) C25—H25A 0.9300
C6—O3 1.187 (3) C26—C27 1.368 (3)
C6—O4 1.331 (2) C26—H26A 0.9300
C7—O4 1.428 (3) C27—C28 1.367 (3)
C7—C8 1.480 (4) C27—C30 1.448 (3)
C7—H7A 0.9700 C28—C29 1.352 (3)
C7—H7B 0.9700 C28—H28A 0.9300
C8—H8A 0.9600 C29—H29A 0.9300
C8—H8B 0.9600 C30—N6 1.306 (3)
C8—H8C 0.9600 C30—N9 1.317 (3)
C9—C14 1.367 (3) C31—N1 1.433 (3)
C9—C10 1.370 (3) C31—H31A 0.9600
C10—C11 1.355 (3) C31—H31B 0.9600
C10—H10A 0.9300 C31—H31C 0.9600
C11—C12 1.371 (3) C32—N1 1.433 (4)
C11—H11A 0.9300 C32—H32A 0.9600
C12—C13 1.367 (3) C32—H32B 0.9600
C12—C15 1.447 (3) C32—H32C 0.9600
C13—C14 1.361 (3) C33—O7 1.212 (3)
C13—H13A 0.9300 C33—N1 1.293 (3)
C14—H14A 0.9300 C33—H33A 1.0042
C15—N2 1.302 (3) N2—N3 1.344 (3)
C15—N5 1.315 (3) N3—N4 1.279 (3)
C16—C17 1.476 (3) N4—N5 1.323 (3)
C16—H16A 0.9600 N5—H5A 0.8600
C16—H16B 0.9600 N6—N7 1.334 (3)
C16—H16C 0.9600 N7—N8 1.274 (3)
C17—C20 1.331 (3) N8—N9 1.333 (3)
C17—N10 1.366 (3) N9—H9A 0.8600
C18—O1 1.225 (2) N10—H10B 0.8600
C18—N11 1.317 (3) N11—H11B 0.8600
C18—N10 1.346 (3) N12—H12A 0.8600
C19—N11 1.441 (3) N13—H13B 0.8600
C19—C20 1.504 (3) O1W—H1WA 0.8499
C19—C24 1.509 (3) O1W—H1WB 0.8500
C19—H19A 0.9800 C5—H5D 0.9601
C20—C21 1.448 (3) C5—H5E 0.9601
C21—O5 1.185 (3) C5—H5B 0.9599
C21—O6 1.330 (3)
C4—C1—C6 121.78 (18) H22A—C22—H22B 108.0
C4—C1—C2 120.85 (18) C22—C23—H23A 109.5
C6—C1—C2 117.29 (17) C22—C23—H23B 109.5
N13—C2—C1 109.72 (16) H23A—C23—H23B 109.5
N13—C2—C9 109.77 (16) C22—C23—H23C 109.5
C1—C2—C9 112.83 (16) H23A—C23—H23C 109.5
N13—C2—H2A 108.1 H23B—C23—H23C 109.5
C1—C2—H2A 108.1 C25—C24—C29 117.6 (2)
C9—C2—H2A 108.1 C25—C24—C19 121.88 (18)
O2—C3—N13 122.93 (19) C29—C24—C19 120.47 (18)
O2—C3—N12 121.02 (18) C26—C25—C24 121.3 (2)
N13—C3—N12 116.05 (18) C26—C25—H25A 119.3
C1—C4—N12 119.62 (18) C24—C25—H25A 119.3
C1—C4—C5 127.02 (19) C25—C26—C27 120.3 (2)
N12—C4—C5 113.36 (18) C25—C26—H26A 119.8
O3—C6—O4 122.1 (2) C27—C26—H26A 119.8
O3—C6—C1 127.3 (2) C28—C27—C26 118.5 (2)
O4—C6—C1 110.62 (17) C28—C27—C30 118.56 (19)
O4—C7—C8 107.5 (2) C26—C27—C30 122.9 (2)
O4—C7—H7A 110.2 C29—C28—C27 120.9 (2)
C8—C7—H7A 110.2 C29—C28—H28A 119.5
O4—C7—H7B 110.2 C27—C28—H28A 119.5
C8—C7—H7B 110.2 C28—C29—C24 121.3 (2)
H7A—C7—H7B 108.5 C28—C29—H29A 119.4
C7—C8—H8A 109.5 C24—C29—H29A 119.4
C7—C8—H8B 109.5 N6—C30—N9 107.9 (2)
H8A—C8—H8B 109.5 N6—C30—C27 125.0 (2)
C7—C8—H8C 109.5 N9—C30—C27 127.0 (2)
H8A—C8—H8C 109.5 N1—C31—H31A 109.5
H8B—C8—H8C 109.5 N1—C31—H31B 109.5
C14—C9—C10 118.58 (18) H31A—C31—H31B 109.5
C14—C9—C2 121.16 (18) N1—C31—H31C 109.5
C10—C9—C2 120.26 (17) H31A—C31—H31C 109.5
C11—C10—C9 120.90 (18) H31B—C31—H31C 109.5
C11—C10—H10A 119.5 N1—C32—H32A 109.5
C9—C10—H10A 119.5 N1—C32—H32B 109.5
C10—C11—C12 120.31 (19) H32A—C32—H32B 109.5
C10—C11—H11A 119.8 N1—C32—H32C 109.5
C12—C11—H11A 119.8 H32A—C32—H32C 109.5
C13—C12—C11 119.11 (19) H32B—C32—H32C 109.5
C13—C12—C15 121.13 (18) O7—C33—N1 124.6 (3)
C11—C12—C15 119.75 (18) O7—C33—H33A 126.2
C14—C13—C12 120.26 (19) N1—C33—H33A 109.1
C14—C13—H13A 119.9 C33—N1—C31 120.3 (2)
C12—C13—H13A 119.9 C33—N1—C32 122.1 (2)
C13—C14—C9 120.81 (19) C31—N1—C32 117.6 (2)
C13—C14—H14A 119.6 C15—N2—N3 105.71 (18)
C9—C14—H14A 119.6 N4—N3—N2 110.67 (18)
N2—C15—N5 108.38 (18) N3—N4—N5 106.21 (18)
N2—C15—C12 126.34 (19) C15—N5—N4 109.04 (19)
N5—C15—C12 125.27 (19) C15—N5—H5A 125.5
C17—C16—H16A 109.5 N4—N5—H5A 125.5
C17—C16—H16B 109.5 C30—N6—N7 106.4 (2)
H16A—C16—H16B 109.5 N8—N7—N6 110.6 (2)
C17—C16—H16C 109.5 N7—N8—N9 106.5 (2)
H16A—C16—H16C 109.5 C30—N9—N8 108.6 (2)
H16B—C16—H16C 109.5 C30—N9—H9A 125.7
C20—C17—N10 119.30 (19) N8—N9—H9A 125.7
C20—C17—C16 127.56 (19) C18—N10—C17 123.34 (17)
N10—C17—C16 113.14 (18) C18—N10—H10B 118.3
O1—C18—N11 123.67 (19) C17—N10—H10B 118.3
O1—C18—N10 120.24 (18) C18—N11—C19 124.76 (17)
N11—C18—N10 116.09 (18) C18—N11—H11B 117.6
N11—C19—C20 108.71 (16) C19—N11—H11B 117.6
N11—C19—C24 111.60 (17) C3—N12—C4 123.98 (17)
C20—C19—C24 112.44 (17) C3—N12—H12A 118.0
N11—C19—H19A 108.0 C4—N12—H12A 118.0
C20—C19—H19A 108.0 C3—N13—C2 125.87 (17)
C24—C19—H19A 108.0 C3—N13—H13B 117.1
C17—C20—C21 120.85 (19) C2—N13—H13B 117.1
C17—C20—C19 119.56 (18) C6—O4—C7 115.84 (17)
C21—C20—C19 119.60 (18) C21—O6—C22 115.97 (19)
O5—C21—O6 122.2 (2) H1WA—O1W—H1WB 109.5
O5—C21—C20 126.7 (2) C4—C5—H5D 109.5
O6—C21—C20 111.16 (19) C4—C5—H5E 109.4
O6—C22—C23 111.0 (2) H5D—C5—H5E 109.5
O6—C22—H22A 109.4 C4—C5—H5B 109.5
C23—C22—H22A 109.4 H5D—C5—H5B 109.5
O6—C22—H22B 109.4 H5E—C5—H5B 109.5
C23—C22—H22B 109.4

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N5—H5A···O1W 0.86 1.80 2.646 (3) 170
N9—H9A···O7 0.86 1.82 2.683 (3) 176
N10—H10B···O2 0.86 1.98 2.801 (2) 160
N11—H11B···N2i 0.86 2.26 3.014 (3) 147
N12—H12A···O1 0.86 2.04 2.884 (2) 165
N13—H13B···O7ii 0.86 2.44 3.176 (3) 144
O1W—H1WA···N8ii 0.85 2.17 2.985 (3) 160
O1W—H1WB···O1iii 0.85 2.01 2.677 (2) 135
C5—H5D···O3 0.96 2.07 2.817 (3) 133
C16—H16A···O5 0.96 2.03 2.781 (3) 133
C26—H26A···O7 0.93 2.59 3.431 (3) 151
C32—H32A···N3iv 0.96 2.53 3.463 (4) 164
C33—H33A···N3iv 1.00 2.53 3.506 (3) 164

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y, −z+1; (iii) x, y, z−1; (iv) x+1, y−1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5754).

References

  1. Atwal, K. S., Rovnyak, G. C., Schwartz, J., Moreland, S., Hedberg, A., Gougoutas, J. Z., Malley, M. F. & Floyd, D. M. (1990). J. Med. Chem. A33, 1510–1515. [DOI] [PubMed]
  2. Kappe, C. O. & Stadler, A. (2004). Org. React., A63, 1–116.
  3. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813032224/xu5754sup1.cif

e-70-000o1-sup1.cif (27.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813032224/xu5754Isup2.hkl

e-70-000o1-Isup2.hkl (391.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536813032224/xu5754Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES