Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Dec 18;70(Pt 1):m24. doi: 10.1107/S1600536813032832

catena-Poly[{μ3-3,3′-[(1,7-dioxa-4,10-di­aza­cyclo­dodecane-4,10-di­yl)bis­(methyl­ene)]dibenzoato}cobalt(II)]

Liang Liao a, Conrad W Ingram a,*, John Bacsa b, Cass Parker a
PMCID: PMC3914058  PMID: 24526951

Abstract

The title compound, [Co(C24H28N2O6)]n, crystallizes as infinite chains related to one another by inversion centers, giving a centrosymmetric coordination polymer. The CoII ion, situated on a twofold rotation axis, forms a complex with the crown-4 moiety of the 3,3′-[(1,7-dioxa-4,10-di­aza­cyclo­do­decane-4,10-di­yl)bis­(meth­ylene)]dibenzoate anion. The dis­torted octahedral coordination sphere of the CoII ion is completed by two carboxyl­ate O atoms from two bridging intra-chain ligands. Metallomacrocyclic rings of 16 atoms are present, with each ring containing two CoII ions and 14 atoms from the bridging ligands. These units repeat as infinite zigzag chains along [101].

Related literature  

For the structures of coordination polymers (CPs) or compounds with metal-organic frameworks including one-dimensional CPs or MOFs, see: Du et al. (2013); Ingram et al. (2012, 2013); Janiak (2013); Leong & Vittal (2011).graphic file with name e-70-00m24-scheme1.jpg

Experimental  

Crystal data  

  • [Co(C24H28N2O6)]

  • M r = 499.41

  • Monoclinic, Inline graphic

  • a = 20.626 (2) Å

  • b = 8.9778 (10) Å

  • c = 13.9263 (16) Å

  • β = 127.051 (1)°

  • V = 2058.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 173 K

  • 0.40 × 0.14 × 0.14 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012) T min = 0.606, T max = 0.746

  • 3614 measured reflections

  • 2930 independent reflections

  • 2290 reflections with I > 2σ(I)

  • R int = 0.018

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.125

  • S = 1.02

  • 2930 reflections

  • 150 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813032832/gg2131sup1.cif

e-70-00m24-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813032832/gg2131Isup2.hkl

e-70-00m24-Isup2.hkl (161KB, hkl)

Supporting information file. DOI: 10.1107/S1600536813032832/gg2131Isup3.cdx

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support of NSF/CREST/ CFNM (award No. HRD-1137751) is acknowledged.

supplementary crystallographic information

1. Comment

The title compound is the one of a series of coordination polymers prepared from the anionic ligand LH2, 3,3'-((1,7-dioxa-4,10-diazacyclododecane-4,10-diyl)bis(methylene))dibenzoate. This ligand shows unusual adaptability in that it displays two complexation modes on binding to metals. The ligand attaches to the metal via two oxygen and two nitrogen atoms (forming a crown complex). The crown forms four bonds to the metal, while an ideal coordination number for a CoII ion is 6. Thus vacant coordination sites suitable for coordination by the carboxylate groups exist. The carboxylate ions behave as monodentate bridging ligands and the entire ligand is hexadentate. The CoII atom is moved out of the best plane of the crown since this arrangement is better for forming optimal bonds to the ligand. This new compound is novel in that, although the ligands bridge the metal atoms forming one-dimensional chains, the metal atoms are positioned in the center of the organic linker. Topologically, the CoII atoms and the ligands forms nodes in the network rather than the metal atoms only.

The title compound is synthesized from the ligand LH2, 3,3'-((1,7-dioxa-4,10-diazacyclododecane-4,10-diyl)bis(methylene)) dibenzoic acid. The metal atoms are positioned in the center of the organic linker. The asymmetric unit of the compound contains a CoII ion and a deprotonated ligand L with formula C24H28N2O6Co. The CoII ion is 6-coordinate in a distorted octahedral geometry being bound to two N atoms and two O atoms of the crown (1,7-diaza-12-crown-4) and two carboxylic O atoms, one from each of two additional intra-chain ligands (Figure 1s). The Co1—O1, Co1—O3 and Co1—N1 bond lengths are 1.9886 (16), 2.2399 (16) and 2.2213 (17) Å, respectively. The O1—Co1—O1 angle is 104.15 (9)°. The shortest distance between two neighboring CoII ions along a chain is 9.046 (1) Å. The CoII ion of the Co(crown-4)2+ unit is located on a 2-fold rotation axis. The symmetry independent atoms consist of one half of the ligand with the rotation axis generating the second half of the ligand at the Co atom. Bond circuits consisting of sixteen-membered metallomacrocycle rings can be identified in the structure. Each ring contains two CoII ions and fourteen non-H atoms of the ligand. Each CoII ion is a node for three ligands and two connected macrocycle rings. The pair of benzene moieties within a metallomacrocycle ring are remarkably co-planar (the two rings are in the same plane within experimental error). The dihedral angle between this plane and the plane of the next two nearest phenyl rings along the 1-D chain is 68.79 (5)°. Repetition of these units creates a 1-D polymer network with an infinite number of these rings.

2. Experimental

The title compound was synthesized in an autoclave by mixing the ligand, 3,3'-((1,7-dioxa-4,10-diazacyclododecane-4,10-diyl)bis(methylene))dibenzoic acid, LH2 (4x10-5 mol), (Ingram et al. (2012), (2013)) Co(NO3)2·6H2O (1.2x10-4 mol, 35.8 mg), H2O (12 ml) and pyridine (4x10-2 ml). The mixture was heated at 130 °C in an autoclave for 7 days and then cooled to ambient temperature. Red crystals were collected and washed with H2O by filtration. Elem. anal. calcd. C24H28N2O6Co %: C, 57.72; H, 5.65; N, 5.61; Found: C, 57.79; H, 5.74; N, 5.46.

3. Refinement

Refinement Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt), etc and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F and R– factors based on ALL data will be even larger. Computing details Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009);program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures

Fig. 1.

Fig. 1.

A view of a portion of one of the chains of (I). Non-H atoms are represented by ellipsoids at the 50% probability level. Sixteen membered metallomacrocycle rings can be identified from this figure.

Crystal data

[Co(C24H28N2O6)] F(000) = 1044
Mr = 499.41 Dx = 1.612 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 20.626 (2) Å Cell parameters from 4901 reflections
b = 8.9778 (10) Å θ = 2.5–31.0°
c = 13.9263 (16) Å µ = 0.88 mm1
β = 127.051 (1)° T = 173 K
V = 2058.2 (4) Å3 Needle, red
Z = 4 0.40 × 0.14 × 0.14 mm

Data collection

Bruker D8 diffractometer with a APEXII detector 2930 independent reflections
Radiation source: fine-focus sealed tube 2290 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.018
Detector resolution: 512 pixels mm-1 θmax = 31.2°, θmin = 2.6°
φ and ω scans with a narrow frame width h = −28→18
Absorption correction: multi-scan (SADABS; Bruker, 2012) k = −12→4
Tmin = 0.606, Tmax = 0.746 l = −20→19
3614 measured reflections

Refinement

Refinement on F2 Primary atom site location: iterative
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: difference Fourier map
wR(F2) = 0.125 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.073P)2] where P = (Fo2 + 2Fc2)/3
2930 reflections (Δ/σ)max < 0.001
150 parameters Δρmax = 0.80 e Å3
0 restraints Δρmin = −0.47 e Å3

Special details

Experimental. Absorption correction: SADABS-2012/1 (Bruker,2012) was used for absorption correction. wR2(int) was 0.0566 before and 0.0407 after correction. The Ratio of minimum to maximum transmission is 0.8118. The λ/2 correction factor is 0.0015.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
H3 0.2131 −0.1861 0.3961 0.018*
H5 0.3214 0.0551 0.2858 0.021*
H6 0.1962 0.0922 0.1030 0.020*
H7 0.0799 −0.0063 0.0656 0.017*
H8a 0.3537 −0.1744 0.5242 0.018*
H8b 0.3996 −0.1315 0.4708 0.018*
H9a 0.3126 0.0166 0.5936 0.022*
H9b 0.2955 0.1475 0.5068 0.022*
H10a 0.3343 0.2306 0.6986 0.025*
H10b 0.3890 0.2984 0.6656 0.025*
H11a 0.4755 0.2883 0.9128 0.023*
H11b 0.5171 0.3117 0.8492 0.023*
H12a 0.3833 0.2132 0.4673 0.022*
H12b 0.4423 0.0940 0.4768 0.022*
C1 0.06017 (14) −0.1928 (2) 0.19467 (19) 0.0158 (4)
C2 0.13474 (13) −0.1115 (2) 0.22645 (18) 0.0134 (4)
C3 0.20986 (14) −0.1300 (2) 0.33718 (19) 0.0148 (4)
C4 0.28076 (14) −0.0671 (2) 0.36296 (18) 0.0139 (4)
C5 0.27494 (14) 0.0150 (3) 0.27221 (19) 0.0174 (5)
C6 0.19972 (15) 0.0363 (2) 0.16222 (19) 0.0171 (4)
C7 0.12995 (14) −0.0239 (2) 0.13905 (19) 0.0143 (4)
C8 0.36136 (14) −0.0955 (2) 0.48429 (19) 0.0153 (4)
C9 0.33771 (14) 0.0978 (3) 0.5810 (2) 0.0185 (5)
C10 0.37353 (14) 0.2069 (3) 0.6840 (2) 0.0205 (5)
C11 0.50015 (14) 0.2376 (2) 0.8806 (2) 0.0194 (5)
C12 0.42768 (14) 0.1462 (2) 0.52219 (19) 0.0184 (5)
N1 0.39880 (11) 0.03569 (18) 0.56797 (16) 0.0130 (4)
O1 0.07535 (10) −0.31870 (17) 0.24829 (14) 0.0177 (3)
O2 −0.00750 (10) −0.1403 (2) 0.11880 (15) 0.0266 (4)
O3 0.44337 (10) 0.13620 (18) 0.78732 (13) 0.0184 (3)
Co1 0.0000 −0.45483 (4) 0.2500 0.01262 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0172 (12) 0.0174 (10) 0.0141 (9) −0.0039 (8) 0.0102 (9) −0.0025 (8)
C2 0.0121 (11) 0.0108 (9) 0.0152 (9) −0.0006 (7) 0.0070 (8) −0.0018 (7)
C3 0.0175 (11) 0.0117 (9) 0.0141 (9) 0.0000 (8) 0.0090 (9) 0.0014 (7)
C4 0.0128 (11) 0.0142 (10) 0.0121 (9) 0.0002 (7) 0.0062 (8) −0.0003 (7)
C5 0.0153 (12) 0.0193 (11) 0.0161 (10) −0.0031 (8) 0.0086 (9) −0.0003 (8)
C6 0.0205 (12) 0.0151 (10) 0.0148 (9) −0.0033 (8) 0.0103 (9) 0.0013 (8)
C7 0.0138 (11) 0.0138 (10) 0.0120 (9) 0.0012 (8) 0.0060 (8) 0.0005 (7)
C8 0.0132 (11) 0.0135 (9) 0.0154 (9) 0.0002 (8) 0.0066 (9) −0.0007 (7)
C9 0.0120 (11) 0.0204 (11) 0.0165 (10) 0.0034 (8) 0.0052 (9) 0.0006 (8)
C10 0.0167 (12) 0.0202 (11) 0.0181 (10) 0.0061 (9) 0.0071 (9) 0.0003 (8)
C11 0.0162 (12) 0.0169 (11) 0.0178 (10) 0.0027 (8) 0.0064 (9) −0.0049 (8)
C12 0.0178 (12) 0.0175 (10) 0.0153 (9) −0.0032 (8) 0.0075 (9) 0.0035 (8)
N1 0.0104 (9) 0.0122 (8) 0.0139 (8) −0.0011 (6) 0.0059 (7) −0.0004 (6)
O1 0.0156 (8) 0.0148 (7) 0.0219 (8) 0.0001 (6) 0.0110 (7) 0.0024 (6)
O2 0.0132 (9) 0.0302 (10) 0.0244 (8) −0.0007 (7) 0.0049 (7) 0.0103 (7)
O3 0.0140 (8) 0.0165 (7) 0.0152 (7) 0.0027 (6) 0.0037 (6) −0.0016 (6)
Co1 0.0105 (2) 0.0114 (2) 0.0141 (2) 0.000 0.00639 (17) 0.000

Geometric parameters (Å, º)

C1—C2 1.508 (3) C11—H11b 0.9700
C2—C3 1.388 (3) C11—C12i 1.515 (3)
C2—C7 1.402 (3) C12—H12a 0.9700
C3—H3 0.9300 C12—H12b 0.9700
C4—C3 1.398 (3) C12—C11i 1.515 (3)
C4—C8 1.516 (3) N1—C8 1.502 (3)
C5—H5 0.9300 N1—C9 1.486 (3)
C5—C4 1.404 (3) N1—C12 1.484 (3)
C6—H6 0.9300 N1—Co1ii 2.2212 (17)
C6—C5 1.388 (3) O1—C1 1.285 (3)
C7—H7 0.9300 O2—C1 1.229 (3)
C7—C6 1.381 (3) O3—C10 1.432 (3)
C8—H8a 0.9700 O3—C11 1.433 (3)
C8—H8b 0.9700 O3—Co1ii 2.2400 (16)
C9—H9a 0.9700 Co1—N1iii 2.2213 (17)
C9—H9b 0.9700 Co1—N1ii 2.2213 (17)
C9—C10 1.511 (3) Co1—O1 1.9886 (16)
C10—H10a 0.9700 Co1—O1iv 1.9886 (16)
C10—H10b 0.9700 Co1—O3iii 2.2399 (16)
C11—H11a 0.9700 Co1—O3ii 2.2399 (16)
O1—C1—C2 114.0 (2) O3—C10—C9 106.67 (18)
O2—C1—C2 119.75 (19) H11a—C11—H11b 108.6
O2—C1—O1 126.2 (2) C12i—C11—H11a 110.3
C3—C2—C1 121.76 (19) C12i—C11—H11b 110.3
C3—C2—C7 118.7 (2) O3—C11—H11a 110.3
C7—C2—C1 119.40 (19) O3—C11—H11b 110.3
C2—C3—H3 118.9 O3—C11—C12i 107.00 (17)
C2—C3—C4 122.10 (19) H12a—C12—H12b 107.6
C4—C3—H3 118.9 C11i—C12—H12a 108.7
C3—C4—C5 118.2 (2) C11i—C12—H12b 108.7
C3—C4—C8 119.56 (19) N1—C12—H12a 108.7
C5—C4—C8 122.2 (2) N1—C12—H12b 108.7
C4—C5—H5 120.1 N1—C12—C11i 114.25 (17)
C6—C5—H5 120.1 C8—N1—Co1ii 108.63 (12)
C6—C5—C4 119.9 (2) C9—N1—C8 108.17 (17)
C5—C6—H6 119.4 C9—N1—Co1ii 105.43 (12)
C7—C6—H6 119.4 C12—N1—C8 110.02 (17)
C7—C6—C5 121.2 (2) C12—N1—C9 113.03 (17)
C2—C7—H7 120.1 C12—N1—Co1ii 111.36 (13)
C6—C7—H7 120.1 C1—O1—Co1 128.97 (15)
C6—C7—C2 119.9 (2) C10—O3—C11 114.03 (17)
H8a—C8—H8b 107.4 C10—O3—Co1ii 116.01 (13)
C4—C8—H8a 108.3 C11—O3—Co1ii 114.60 (13)
C4—C8—H8b 108.3 N1iii—Co1—N1ii 141.85 (9)
N1—C8—H8a 108.3 N1iii—Co1—O3iii 76.37 (6)
N1—C8—H8b 108.3 N1ii—Co1—O3iii 76.14 (6)
N1—C8—C4 116.03 (17) N1ii—Co1—O3ii 76.37 (6)
H9a—C9—H9b 107.8 N1iii—Co1—O3ii 76.14 (6)
C10—C9—H9a 108.9 O1—Co1—N1ii 90.61 (7)
C10—C9—H9b 108.9 O1iv—Co1—N1ii 113.02 (7)
N1—C9—H9a 108.9 O1iv—Co1—N1iii 90.61 (7)
N1—C9—H9b 108.9 O1—Co1—N1iii 113.02 (7)
N1—C9—C10 113.18 (19) O1iv—Co1—O1 104.15 (9)
H10b—C10—H10a 108.6 O1—Co1—O3ii 85.61 (6)
C9—C10—H10a 110.4 O1iv—Co1—O3iii 85.61 (6)
C9—C10—H10b 110.4 O1—Co1—O3iii 165.96 (6)
O3—C10—H10a 110.4 O1iv—Co1—O3ii 165.96 (6)
O3—C10—H10b 110.4 O3iii—Co1—O3ii 86.74 (9)
C1—C2—C3—C4 173.4 (2) C10—O3—C11—C12i −175.92 (19)
C1—C2—C7—C6 −172.2 (2) C11—O3—C10—C9 159.56 (19)
C2—C7—C6—C5 −1.7 (3) C12—N1—C8—C4 −70.1 (2)
C3—C2—C7—C6 2.9 (3) C12—N1—C9—C10 −71.2 (2)
C3—C4—C8—N1 −110.1 (2) N1—C9—C10—O3 −49.7 (3)
C5—C4—C3—C2 −1.1 (3) O1—C1—C2—C3 −28.4 (3)
C5—C4—C8—N1 73.0 (3) O1—C1—C2—C7 146.5 (2)
C6—C5—C4—C3 2.4 (3) O2—C1—C2—C3 155.1 (2)
C6—C5—C4—C8 179.3 (2) O2—C1—C2—C7 −30.0 (3)
C7—C2—C3—C4 −1.5 (3) Co1ii—N1—C8—C4 167.72 (15)
C7—C6—C5—C4 −1.0 (3) Co1ii—N1—C9—C10 50.7 (2)
C8—C4—C3—C2 −178.10 (19) Co1ii—N1—C12—C11i −30.1 (2)
C8—N1—C9—C10 166.73 (18) Co1—O1—C1—C2 172.68 (13)
C8—N1—C12—C11i −150.6 (2) Co1—O1—C1—O2 −11.1 (3)
C9—N1—C8—C4 53.8 (2) Co1ii—O3—C10—C9 23.1 (2)
C9—N1—C12—C11i 88.3 (2) Co1ii—O3—C11—C12i −38.8 (2)

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+1/2, −y−1/2, −z+1; (iii) x−1/2, −y−1/2, z−1/2; (iv) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2131).

References

  1. Bruker (2009). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2011). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2012). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Du, M., Li, C. P., Liu, C. S. & Fang, S. M. (2013). Coord. Chem. Rev. 257, 1282–1305.
  6. Ingram, C. W., Liao, L. & Bacsa, J. (2012). Acta Cryst. E68, m1410. [DOI] [PMC free article] [PubMed]
  7. Ingram, C. W., Liao, L., Bacsa, J., Harruna, I., Sabo, D. & Zhang, Z. J. (2013). Cryst. Growth Des. 13, 1131–1139.
  8. Janiak, C. (2013). Chem. Commun. 49, 6933–6937. [DOI] [PubMed]
  9. Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813032832/gg2131sup1.cif

e-70-00m24-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813032832/gg2131Isup2.hkl

e-70-00m24-Isup2.hkl (161KB, hkl)

Supporting information file. DOI: 10.1107/S1600536813032832/gg2131Isup3.cdx

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES