Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Dec 7;70(Pt 1):o18. doi: 10.1107/S1600536813032595

4-Amino-12-methyl­sulfon­yloxy-[2.2]para­cyclo­phane

Xiangchao Meng a, Wenzeng Duan b,c,*, Yinfeng Han b
PMCID: PMC3914068  PMID: 24526969

Abstract

The title compound, C17H19NO3S, was synthesized from 4-benzhydryl­idene­amino-12-hy­droxy-[2.2]para­cyclo­phane and methane­sulfonyl chloride. In the mol­ecule, the distance between the centroids of two aromatic rings is 2.960 (5) Å. In the crystal, weak N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the ac plane.

Related literature  

For background to [2.2]para­cyclo­phane, see: Cram et al. (1959); Liebman & Greenberg (1976); Dyson et al. (1998). For its synthesis and applications in catalysis, see: Hou et al. (2000); Duan et al. (2008, 2012). For a related structure, see: Ma et al. (2012).graphic file with name e-70-00o18-scheme1.jpg

Experimental  

Crystal data  

  • C17H19NO3S

  • M r = 317.39

  • Orthorhombic, Inline graphic

  • a = 8.017 (7) Å

  • b = 11.734 (9) Å

  • c = 16.131 (13) Å

  • V = 1517 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 273 K

  • 0.13 × 0.12 × 0.10 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.971, T max = 0.978

  • 7769 measured reflections

  • 2676 independent reflections

  • 2266 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.084

  • S = 1.04

  • 2676 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983), 1122 Friedel pairs

  • Absolute structure parameter: 0.02 (9)

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813032595/cv5436sup1.cif

e-70-00o18-sup1.cif (23.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813032595/cv5436Isup2.hkl

e-70-00o18-Isup2.hkl (131.4KB, hkl)

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2i 0.86 2.43 3.262 (3) 163
C10—H10B⋯O1ii 0.97 2.52 3.390 (4) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Financial support from Shandong Province Natural Science Foundation (ZR2012BL08) is gratefully acknowledged.

supplementary crystallographic information

1. Comment

Since the first synthesis of [2.2]paracyclophane (Cram, 1959), its structure atrracted considerable interest (Liebman et al., 1976; Dyson et al., 1998). [2.2]Paracyclophane needs only one substituent to become planar chiral, so, there has been notable progress with regard to the synthesis of new derivatives and their applications in asymmetric catalysis(Hou et al., 2000; Duan et al., 2008).

In the title compound (Fig. 1), all bond lengths and angles are normal and in agreement with those observed in the related structure (Ma et al., 2012). In the molecule, the distance between the centroids of two aromatic rings is 2.960 (5) Å. The crystal packing exhibits weak intermolecular N—H···O and C—H···O hydrogen bonds (Table 1), which link the molecules into layers parallel to the ac plane.

2. Experimental

The title compound was prepared by the method reported by Duan et al. (2012). The crystals were obtained by recrystallization from hexane and ethyl acetate.

3. Refinement

All the H atoms were located in difference maps, but placed in idealized positions (N—H 0.86 Å, C—H 0.93–0.97 Å), and refined as riding, with with Uiso(H) = 1.2–1.5 Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-numbering scheme and 50% probability displacement ellipsoids.

Crystal data

C17H19NO3S F(000) = 672
Mr = 317.39 Dx = 1.389 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2210 reflections
a = 8.017 (7) Å θ = 2.8–23.1°
b = 11.734 (9) Å µ = 0.23 mm1
c = 16.131 (13) Å T = 273 K
V = 1517 (2) Å3 Block, colourless
Z = 4 0.13 × 0.12 × 0.10 mm

Data collection

Bruker SMART CCD diffractometer 2676 independent reflections
Radiation source: fine-focus sealed tube 2266 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
phi and ω scans θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −9→9
Tmin = 0.971, Tmax = 0.978 k = −13→13
7769 measured reflections l = −11→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.0218P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2676 reflections Δρmax = 0.15 e Å3
200 parameters Δρmin = −0.23 e Å3
0 restraints Absolute structure: Flack (1983), 1122 Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.02 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.0276 (4) 0.2690 (2) 0.10319 (15) 0.0464 (7)
H1C 1.0358 0.1905 0.0849 0.056*
H1D 1.1386 0.3019 0.1019 0.056*
C2 0.9100 (3) 0.3373 (2) 0.04181 (16) 0.0484 (7)
H2A 0.9781 0.3785 0.0022 0.058*
H2B 0.8411 0.2839 0.0113 0.058*
C3 0.7987 (3) 0.4208 (2) 0.08747 (14) 0.0386 (6)
C4 0.6334 (4) 0.3938 (2) 0.10371 (16) 0.0478 (7)
H4 0.5785 0.3439 0.0682 0.057*
C5 0.5469 (3) 0.4382 (2) 0.17062 (18) 0.0492 (7)
H5 0.4357 0.4188 0.1794 0.059*
C6 0.6281 (3) 0.5120 (2) 0.22456 (16) 0.0412 (6)
C7 0.7798 (3) 0.5569 (2) 0.19893 (15) 0.0402 (6)
H7 0.8257 0.6175 0.2283 0.048*
C8 0.8654 (3) 0.5139 (2) 0.13052 (15) 0.0376 (6)
C9 0.5778 (4) 0.5230 (3) 0.31434 (17) 0.0551 (8)
H9A 0.4571 0.5206 0.3180 0.066*
H9B 0.6140 0.5967 0.3348 0.066*
C10 0.6529 (3) 0.4269 (2) 0.37183 (16) 0.0491 (7)
H10A 0.7088 0.4625 0.4185 0.059*
H10B 0.5624 0.3808 0.3935 0.059*
C11 0.7741 (3) 0.3510 (2) 0.32766 (15) 0.0359 (6)
C12 0.7184 (3) 0.2616 (2) 0.27724 (15) 0.0425 (7)
H12 0.6159 0.2280 0.2886 0.051*
C13 0.8110 (3) 0.2222 (2) 0.21135 (16) 0.0432 (7)
H13 0.7716 0.1612 0.1802 0.052*
C14 0.9620 (3) 0.27203 (19) 0.19075 (14) 0.0358 (6)
C15 1.0336 (3) 0.34300 (19) 0.24992 (15) 0.0336 (6)
H15 1.1437 0.3666 0.2440 0.040*
C16 0.9421 (3) 0.37825 (19) 0.31712 (14) 0.0304 (6)
C17 1.0148 (4) 0.3455 (2) 0.51017 (17) 0.0548 (8)
H17A 0.9649 0.2812 0.4830 0.082*
H17B 0.9287 0.3953 0.5303 0.082*
H17C 1.0816 0.3196 0.5558 0.082*
N1 1.0226 (3) 0.5546 (2) 0.11279 (15) 0.0610 (7)
H1A 1.0668 0.6060 0.1438 0.073*
H1B 1.0764 0.5286 0.0707 0.073*
O1 1.2545 (2) 0.34091 (17) 0.40407 (12) 0.0602 (6)
O2 1.2004 (2) 0.52194 (15) 0.47560 (11) 0.0553 (5)
O3 1.0125 (2) 0.46195 (13) 0.37118 (10) 0.0355 (4)
S1 1.14007 (8) 0.41905 (5) 0.43999 (4) 0.03807 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0554 (18) 0.0443 (15) 0.0395 (15) 0.0054 (14) 0.0040 (13) −0.0094 (12)
C2 0.059 (2) 0.0540 (16) 0.0325 (15) −0.0026 (14) 0.0012 (12) −0.0085 (12)
C3 0.0400 (15) 0.0459 (14) 0.0298 (13) −0.0008 (13) −0.0051 (10) 0.0041 (11)
C4 0.0484 (17) 0.0558 (17) 0.0393 (15) −0.0035 (15) −0.0172 (14) −0.0016 (12)
C5 0.0306 (15) 0.0631 (18) 0.0538 (17) 0.0011 (14) −0.0059 (13) 0.0068 (14)
C6 0.0382 (16) 0.0432 (15) 0.0421 (15) 0.0115 (13) 0.0007 (13) 0.0056 (11)
C7 0.0513 (17) 0.0289 (13) 0.0404 (15) 0.0050 (12) −0.0003 (12) −0.0003 (10)
C8 0.0431 (15) 0.0360 (13) 0.0338 (13) −0.0012 (12) 0.0014 (12) 0.0090 (10)
C9 0.056 (2) 0.0561 (17) 0.0530 (18) 0.0177 (16) 0.0161 (14) 0.0021 (14)
C10 0.0341 (14) 0.0767 (19) 0.0365 (14) 0.0078 (15) 0.0061 (12) 0.0012 (14)
C11 0.0330 (15) 0.0466 (15) 0.0281 (13) −0.0016 (12) −0.0026 (11) 0.0087 (11)
C12 0.0351 (15) 0.0496 (16) 0.0429 (16) −0.0107 (13) −0.0067 (12) 0.0127 (12)
C13 0.0544 (19) 0.0347 (14) 0.0404 (15) −0.0060 (13) −0.0051 (13) −0.0017 (11)
C14 0.0388 (16) 0.0315 (12) 0.0372 (14) 0.0068 (12) −0.0027 (11) 0.0004 (11)
C15 0.0270 (14) 0.0386 (13) 0.0353 (13) 0.0041 (11) −0.0025 (11) 0.0011 (11)
C16 0.0300 (14) 0.0328 (12) 0.0283 (13) 0.0000 (11) −0.0044 (11) 0.0015 (10)
C17 0.064 (2) 0.0572 (17) 0.0435 (17) −0.0100 (16) −0.0063 (14) 0.0125 (13)
N1 0.0609 (17) 0.0645 (16) 0.0575 (15) −0.0188 (14) 0.0172 (13) −0.0116 (12)
O1 0.0347 (11) 0.0791 (13) 0.0669 (14) 0.0165 (11) −0.0073 (10) −0.0073 (10)
O2 0.0593 (13) 0.0522 (11) 0.0543 (12) −0.0180 (10) −0.0204 (9) −0.0005 (9)
O3 0.0377 (10) 0.0345 (8) 0.0344 (9) 0.0015 (8) −0.0078 (8) −0.0002 (7)
S1 0.0327 (3) 0.0438 (3) 0.0377 (3) −0.0030 (3) −0.0080 (3) 0.0024 (3)

Geometric parameters (Å, º)

C1—C14 1.508 (4) C10—H10A 0.9700
C1—C2 1.585 (4) C10—H10B 0.9700
C1—H1C 0.9700 C11—C16 1.394 (3)
C1—H1D 0.9700 C11—C12 1.401 (4)
C2—C3 1.516 (4) C12—C13 1.377 (4)
C2—H2A 0.9700 C12—H12 0.9300
C2—H2B 0.9700 C13—C14 1.384 (4)
C3—C4 1.387 (4) C13—H13 0.9300
C3—C8 1.400 (3) C14—C15 1.391 (3)
C4—C5 1.385 (4) C15—C16 1.373 (3)
C4—H4 0.9300 C15—H15 0.9300
C5—C6 1.390 (4) C16—O3 1.430 (3)
C5—H5 0.9300 C17—S1 1.742 (3)
C6—C7 1.389 (4) C17—H17A 0.9600
C6—C9 1.509 (4) C17—H17B 0.9600
C7—C8 1.394 (4) C17—H17C 0.9600
C7—H7 0.9300 N1—H1A 0.8600
C8—N1 1.377 (3) N1—H1B 0.8600
C9—C10 1.579 (4) O1—S1 1.421 (2)
C9—H9A 0.9700 O2—S1 1.422 (2)
C9—H9B 0.9700 O3—S1 1.5908 (18)
C10—C11 1.499 (4)
C14—C1—C2 111.5 (2) C9—C10—H10A 109.0
C14—C1—H1C 109.3 C11—C10—H10B 109.0
C2—C1—H1C 109.3 C9—C10—H10B 109.0
C14—C1—H1D 109.3 H10A—C10—H10B 107.8
C2—C1—H1D 109.3 C16—C11—C12 114.1 (2)
H1C—C1—H1D 108.0 C16—C11—C10 123.2 (2)
C3—C2—C1 111.9 (2) C12—C11—C10 120.9 (2)
C3—C2—H2A 109.2 C13—C12—C11 121.9 (2)
C1—C2—H2A 109.2 C13—C12—H12 119.1
C3—C2—H2B 109.2 C11—C12—H12 119.1
C1—C2—H2B 109.2 C12—C13—C14 121.0 (2)
H2A—C2—H2B 107.9 C12—C13—H13 119.5
C4—C3—C8 116.7 (2) C14—C13—H13 119.5
C4—C3—C2 120.4 (2) C13—C14—C15 116.7 (2)
C8—C3—C2 121.3 (2) C13—C14—C1 121.3 (2)
C5—C4—C3 122.7 (3) C15—C14—C1 120.9 (2)
C5—C4—H4 118.7 C16—C15—C14 120.1 (2)
C3—C4—H4 118.7 C16—C15—H15 119.9
C4—C5—C6 119.2 (3) C14—C15—H15 120.0
C4—C5—H5 120.4 C15—C16—C11 122.9 (2)
C6—C5—H5 120.4 C15—C16—O3 118.5 (2)
C5—C6—C7 117.4 (2) C11—C16—O3 117.7 (2)
C5—C6—C9 122.0 (3) S1—C17—H17A 109.5
C7—C6—C9 119.2 (3) S1—C17—H17B 109.5
C6—C7—C8 122.0 (3) H17A—C17—H17B 109.5
C6—C7—H7 119.0 S1—C17—H17C 109.5
C8—C7—H7 119.0 H17A—C17—H17C 109.5
N1—C8—C7 119.3 (2) H17B—C17—H17C 109.5
N1—C8—C3 121.1 (2) C8—N1—H1A 120.0
C7—C8—C3 119.1 (3) C8—N1—H1B 120.0
C6—C9—C10 113.6 (2) H1A—N1—H1B 120.0
C6—C9—H9A 108.8 C16—O3—S1 117.52 (14)
C10—C9—H9A 108.8 O1—S1—O2 119.55 (14)
C6—C9—H9B 108.8 O1—S1—O3 109.55 (12)
C10—C9—H9B 108.8 O2—S1—O3 103.40 (10)
H9A—C9—H9B 107.7 O1—S1—C17 108.54 (14)
C11—C10—C9 113.1 (2) O2—S1—C17 110.74 (14)
C11—C10—H10A 109.0 O3—S1—C17 103.86 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1B···O2i 0.86 2.43 3.262 (3) 163
C10—H10B···O1ii 0.97 2.52 3.390 (4) 149

Symmetry codes: (i) −x+5/2, −y+1, z−1/2; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5436).

References

  1. Bruker (2007). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cram, D. J. (1959). Rec. Chem. Prog. 20, 71–93.
  3. Duan, W. Z., Ma, Y. D., Qu, B., Zhao, L., Chen, J. Q. & Song, C. (2012). Tetrahedron Asymmetry, 23, 1369–1375.
  4. Duan, W. Z., Ma, Y. D., Xia, H. Q., Liu, X. Y., Ma, Q. S. & Sun, J. S. (2008). J. Org. Chem. 73, 4330–4333. [DOI] [PubMed]
  5. Dyson, P. J., Johnson, B. F. G. & Martin, C. M. (1998). Coord. Chem. Rev. 175, 59–89.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Hou, X. L., Wu, X. W., Dai, L. X., Cao, B. X. & Sun, J. (2000). Chem. Commun. pp. 1195–1196.
  8. Liebman, J. F. & Greenberg, A. (1976). Chem. Rev. 76, 311–365.
  9. Ma, K., Duan, W., He, F. & Ma, Y. (2012). Acta Cryst. E68, o1380.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813032595/cv5436sup1.cif

e-70-00o18-sup1.cif (23.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813032595/cv5436Isup2.hkl

e-70-00o18-Isup2.hkl (131.4KB, hkl)

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES