Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Dec 7;70(Pt 1):o25–o26. doi: 10.1107/S1600536813032789

3-(Adamantan-1-yl)-4-ethyl-1-{[4-(2-meth­oxy­phen­yl)piperazin-1-yl]meth­yl}-1H-1,2,4-triazole-5(4H)-thione

Ali A El-Emam a,, Hanaa M Al-Tuwaijri a, Ebtehal S Al-Abdullah a, C S Chidan Kumar b, Hoong-Kun Fun a,*,§
PMCID: PMC3914072  PMID: 24526973

Abstract

In the title compound, C26H37N5OS, the piperazine ring adopts a chair conformation. The triazole ring forms dihedral angles of 67.85 (9) and 59.41 (9)° with the piperazine and benzene rings, respectively, resulting in an approximate V-shaped conformation for the mol­ecule. An intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. The crystal structure features C—H⋯π inter­actions, producing a two-dimensional supramolecular architecture.

Related literature  

For the pharmacological activity of adamantane derivatives and adamantyl-1,2,4-triazoles, see: Togo et al. (1968); El-Emam et al. (2004, 2013); Al-Deeb et al. (2006); Kadi et al. (2007, 2010). For related adamantyl-1,2,4-triazole structures, see: Al-Abdullah et al. (2013); Al-Tamimi, Alafeefy et al. (2013); Al-Tamimi, Al-Abdullah et al. (2013); El-Emam et al. (2012). For the synthesis of the starting material, see: El-Emam & Ibrahim (1991). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-70-00o25-scheme1.jpg

Experimental  

Crystal data  

  • C26H37N5OS

  • M r = 467.67

  • Monoclinic, Inline graphic

  • a = 19.8170 (3) Å

  • b = 11.9384 (3) Å

  • c = 21.7807 (4) Å

  • β = 107.886 (2)°

  • V = 4903.90 (17) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.39 mm−1

  • T = 296 K

  • 0.98 × 0.62 × 0.41 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.344, T max = 0.599

  • 15455 measured reflections

  • 4029 independent reflections

  • 3606 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.115

  • S = 1.05

  • 4029 reflections

  • 308 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813032789/rz5099sup1.cif

e-70-00o25-sup1.cif (35.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813032789/rz5099Isup2.hkl

e-70-00o25-Isup2.hkl (197.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536813032789/rz5099Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O1 0.97 2.26 2.903 (2) 123
C18—H18ACg i 0.97 2.81 3.748 (2) 162

Symmetry code: (i) Inline graphic.

Acknowledgments

The financial support of the Deanship of Scientific Research and the Research Center for Female Scientific and Medical Colleges, King Saud University, is greatly appreciated. CSCK thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

supplementary crystallographic information

1. Comment

Derivatives of adamantane have long been known for their diverse biological activities including antiviral activity against influenza (Togo et al., 1968) and HIV viruses (El-Emam et al., 2004). Moreover, adamantane derivative were reported to exhibit marked antibacterial and anti-inflammatory activities (Kadi et al., 2007, 2010; El-Emam et al., 2013). In continuation of our interest in the chemical and pharmacological properties of adamantane derivatives, and as part of our on-going structural studies of adamantane derivatives (Al-Abdullah et al., 2013); Al-Tamimi, Alafeefy et al., 2013; Al-Tamimi, Al-Abdullah et al., 2013; El-Emam et al., 2012), we have synthesized the title compound (I) as a potential chemotherapeutic agent.

In the crystal structure of the title compound (Fig. 1), the piperazine (N1–N2/C8–C11) ring adopts a chair conformation with puckering parameters: Q = 0.5783 (18) Å, θ = 178.03 (17)°, and φ = 25 (5)° (Cremer & Pople, 1975). The dihedral angle between the piperazine ring and the triazole ring (N3–N5/C13/C14) is 67.85 (9)°. The triazole ring forms a dihedral angle of 59.41 (9)° with the benzene ring (C1—C6), resulting in an approximate V-shape conformation of the molecule. An intramolecular C–H···O hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). The crystal structure features an intermolecular C–H···π interaction with a H18A···Cg distance of 2.81 Å, where Cg is the centroid of the benzene ring (C1—C6).

2. Experimental

A mixture of 527 mg (2 mmol) of 3-(1-adamantyl)-4-ethyl-4H-1,2,4- triazole-5-thiol (El-Emam & Ibrahim, 1991), 1-(2-methoxyphenyl)piperazine (383 mg, 2 mmol) and 37% formaldehyde solution (1 ml) in ethanol (8 ml) was heated under reflux for 15 min until a clear solution was obtained. Stirring was continued for 12 h at room temperature and the mixture was allowed to stand overnight. Cold water (5 ml) was added slowly and the mixture was stirred for 20 min. The precipitated crude product were filtered, washed with water, dried, and crystallized from ethanol to yield 860 mg (92%) of the title compound (C26H37N5OS) as colourless needle crystals. M.p.: 477–479 K. Single plate-shaped crystals suitable for X-ray analysis were obtained by slow evaporation of a CHCl3:EtOH solution (1:1 v/v; 5 ml) at room temperature.

1H NMR (CDCl3, 500.13 MHz): δ 1.32 (t, 3H, CH2CH3, J = 7.0 Hz), 1.71–1.76 (m, 6H, Adamantane-H), 1.98–2.12 (m, 9H, Adamantane-H), 3.08 (s, 8H, Piperazine-H), 3.81 (s, 3H, OCH3), 4.15 (q, 2H, CH2CH3, J = 7.0 Hz), 5.15 (s, 2H, CH2), 6.79–7.01 (m, 4H, Ar—H). 13C NMR (CDCl3, 125.76 MHz): δ 13.76 (CH2CH3), 27.92, 35.32, 36.48, 39.83 (Adamantane-C), 43.83 (CH2CH3), 47.40, 50.18 (Piperazine-C), 55.48 (OCH3), 72.58 (CH2), 111.43, 118.38, 121.12, 123.55, 152.13, 152.26 (Ar—C), 156.57 (Triazole C-5), 167.34 (C=S).

3. Refinement

The H atoms bound to atom C12 were located in a difference Fourier map and refined freely. All other H atoms were positioned geometrically [C—H = 0.93–1.01 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.

Crystal data

C26H37N5OS F(000) = 2016
Mr = 467.67 Dx = 1.267 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2yc Cell parameters from 4154 reflections
a = 19.8170 (3) Å θ = 4.3–69.2°
b = 11.9384 (3) Å µ = 1.39 mm1
c = 21.7807 (4) Å T = 296 K
β = 107.886 (2)° Plate, colourless
V = 4903.90 (17) Å3 0.98 × 0.62 × 0.41 mm
Z = 8

Data collection

Bruker APEXII CCD diffractometer 4029 independent reflections
Radiation source: fine-focus sealed tube 3606 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
φ and ω scans θmax = 65.0°, θmin = 4.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −22→23
Tmin = 0.344, Tmax = 0.599 k = −9→14
15455 measured reflections l = −25→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0627P)2 + 2.6908P] where P = (Fo2 + 2Fc2)/3
4029 reflections (Δ/σ)max < 0.001
308 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.04659 (3) 0.66541 (4) 0.36270 (3) 0.06079 (18)
O1 −0.25953 (6) 1.15940 (11) 0.28999 (6) 0.0511 (3)
N1 −0.12211 (7) 1.09436 (12) 0.31028 (6) 0.0392 (3)
N2 −0.03369 (7) 0.95212 (11) 0.40765 (7) 0.0401 (3)
N3 −0.04059 (7) 0.74873 (11) 0.42680 (7) 0.0410 (3)
N4 −0.09869 (7) 0.71981 (11) 0.44558 (7) 0.0402 (3)
N5 −0.06803 (7) 0.58126 (11) 0.39235 (6) 0.0380 (3)
C1 −0.21966 (9) 1.22602 (15) 0.26341 (8) 0.0414 (4)
C2 −0.24588 (10) 1.32048 (17) 0.22721 (9) 0.0531 (5)
H2A −0.2916 1.3448 0.2233 0.064*
C3 −0.20535 (12) 1.37922 (18) 0.19688 (10) 0.0612 (5)
H3A −0.2239 1.4422 0.1723 0.073*
C4 −0.13806 (12) 1.34470 (18) 0.20304 (10) 0.0609 (5)
H4A −0.1110 1.3826 0.1816 0.073*
C5 −0.11006 (10) 1.25299 (16) 0.24133 (9) 0.0502 (4)
H5A −0.0636 1.2317 0.2460 0.060*
C6 −0.14894 (9) 1.19165 (14) 0.27302 (8) 0.0392 (4)
C7 −0.33410 (10) 1.17746 (19) 0.27037 (11) 0.0604 (5)
H7A −0.3564 1.1195 0.2879 0.091*
H7B −0.3523 1.1760 0.2241 0.091*
H7C −0.3439 1.2490 0.2859 0.091*
C8 −0.05394 (9) 1.05442 (15) 0.30672 (9) 0.0442 (4)
H8A −0.0175 1.1089 0.3266 0.053*
H8B −0.0560 1.0466 0.2619 0.053*
C9 −0.03495 (9) 0.94278 (15) 0.34052 (9) 0.0447 (4)
H9A −0.0695 0.8868 0.3187 0.054*
H9B 0.0112 0.9190 0.3388 0.054*
C10 −0.10279 (9) 0.98856 (14) 0.41065 (8) 0.0407 (4)
H10A −0.1018 0.9943 0.4553 0.049*
H10B −0.1385 0.9339 0.3894 0.049*
C11 −0.12140 (9) 1.10112 (15) 0.37793 (8) 0.0420 (4)
H11A −0.1677 1.1245 0.3796 0.050*
H11B −0.0869 1.1565 0.4006 0.050*
C12 −0.00463 (9) 0.85666 (15) 0.44685 (9) 0.0449 (4)
C13 −0.02030 (9) 0.66608 (14) 0.39407 (8) 0.0419 (4)
C14 −0.11453 (8) 0.61806 (13) 0.42412 (8) 0.0361 (4)
C15 −0.06398 (9) 0.47423 (15) 0.36034 (9) 0.0460 (4)
H15A −0.0532 0.4888 0.3205 0.055*
H15B −0.1098 0.4374 0.3494 0.055*
C16 −0.00816 (11) 0.39690 (17) 0.40219 (12) 0.0619 (5)
H16A −0.0079 0.3279 0.3796 0.093*
H16B −0.0187 0.3818 0.4416 0.093*
H16C 0.0375 0.4319 0.4120 0.093*
C17 −0.17657 (8) 0.55496 (13) 0.43342 (8) 0.0364 (4)
C18 −0.23590 (9) 0.54186 (17) 0.36848 (9) 0.0499 (5)
H18A −0.2510 0.6151 0.3501 0.060*
H18B −0.2181 0.5003 0.3384 0.060*
C19 −0.29894 (10) 0.4796 (2) 0.37923 (10) 0.0603 (5)
H19A −0.3360 0.4702 0.3378 0.072*
C20 −0.27523 (11) 0.36486 (17) 0.40858 (10) 0.0565 (5)
H20A −0.3155 0.3246 0.4142 0.068*
H20B −0.2563 0.3216 0.3799 0.068*
C21 −0.21867 (10) 0.37929 (14) 0.47347 (9) 0.0475 (4)
H21A −0.2040 0.3053 0.4924 0.057*
C22 −0.15471 (9) 0.43877 (14) 0.46354 (8) 0.0410 (4)
H22A −0.1357 0.3944 0.4354 0.049*
H22B −0.1180 0.4469 0.5047 0.049*
C23 −0.20662 (11) 0.62237 (15) 0.47925 (10) 0.0507 (5)
H23A −0.2210 0.6960 0.4612 0.061*
H23B −0.1702 0.6319 0.5204 0.061*
C24 −0.27071 (11) 0.56134 (16) 0.48944 (11) 0.0560 (5)
H24A −0.2893 0.6053 0.5186 0.067*
C25 −0.24790 (12) 0.44675 (16) 0.51877 (10) 0.0559 (5)
H25A −0.2118 0.4550 0.5603 0.067*
H25B −0.2881 0.4081 0.5254 0.067*
C26 −0.32823 (11) 0.54824 (19) 0.42461 (13) 0.0687 (6)
H26A −0.3431 0.6214 0.4060 0.082*
H26B −0.3691 0.5107 0.4307 0.082*
H12B 0.0444 (11) 0.8413 (14) 0.4491 (9) 0.041 (5)*
H12A −0.0064 (10) 0.8708 (16) 0.4920 (10) 0.047 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0474 (3) 0.0637 (3) 0.0818 (4) −0.0027 (2) 0.0354 (3) 0.0117 (3)
O1 0.0367 (6) 0.0607 (8) 0.0589 (7) 0.0015 (5) 0.0190 (6) 0.0018 (6)
N1 0.0369 (7) 0.0470 (8) 0.0371 (7) 0.0033 (6) 0.0162 (6) 0.0050 (6)
N2 0.0353 (7) 0.0400 (7) 0.0438 (7) −0.0084 (6) 0.0102 (6) 0.0071 (6)
N3 0.0369 (7) 0.0382 (7) 0.0488 (8) −0.0090 (6) 0.0146 (6) 0.0065 (6)
N4 0.0393 (7) 0.0368 (7) 0.0465 (8) −0.0088 (6) 0.0163 (6) 0.0046 (6)
N5 0.0357 (7) 0.0383 (7) 0.0413 (7) −0.0050 (5) 0.0139 (6) 0.0039 (6)
C1 0.0408 (8) 0.0461 (9) 0.0374 (8) 0.0006 (7) 0.0119 (7) −0.0064 (7)
C2 0.0489 (10) 0.0551 (11) 0.0510 (10) 0.0109 (8) 0.0091 (8) −0.0003 (9)
C3 0.0687 (13) 0.0524 (11) 0.0572 (11) 0.0101 (10) 0.0115 (10) 0.0121 (10)
C4 0.0680 (13) 0.0610 (12) 0.0575 (12) −0.0006 (10) 0.0249 (10) 0.0158 (10)
C5 0.0469 (10) 0.0566 (11) 0.0510 (10) 0.0035 (8) 0.0206 (8) 0.0090 (9)
C6 0.0403 (8) 0.0435 (9) 0.0340 (8) 0.0006 (7) 0.0116 (6) −0.0011 (7)
C7 0.0373 (10) 0.0740 (13) 0.0698 (13) −0.0014 (9) 0.0162 (9) −0.0158 (11)
C8 0.0399 (9) 0.0523 (10) 0.0457 (9) 0.0031 (7) 0.0208 (7) 0.0087 (8)
C9 0.0384 (9) 0.0479 (9) 0.0513 (10) 0.0024 (7) 0.0188 (7) 0.0068 (8)
C10 0.0394 (8) 0.0461 (9) 0.0380 (8) −0.0102 (7) 0.0140 (7) 0.0000 (7)
C11 0.0431 (9) 0.0474 (9) 0.0376 (8) −0.0020 (7) 0.0157 (7) 0.0006 (7)
C12 0.0367 (9) 0.0431 (9) 0.0485 (10) −0.0124 (7) 0.0038 (7) 0.0081 (8)
C13 0.0344 (8) 0.0443 (9) 0.0453 (9) −0.0033 (7) 0.0101 (7) 0.0122 (8)
C14 0.0375 (8) 0.0347 (8) 0.0366 (8) −0.0046 (6) 0.0120 (6) 0.0058 (7)
C15 0.0457 (9) 0.0468 (9) 0.0474 (9) −0.0047 (8) 0.0171 (8) −0.0041 (8)
C16 0.0531 (11) 0.0473 (10) 0.0829 (15) 0.0033 (8) 0.0174 (10) −0.0013 (10)
C17 0.0390 (8) 0.0335 (8) 0.0391 (8) −0.0079 (6) 0.0154 (7) 0.0025 (7)
C18 0.0422 (9) 0.0618 (11) 0.0441 (9) −0.0080 (8) 0.0109 (7) 0.0140 (9)
C19 0.0403 (10) 0.0835 (14) 0.0527 (11) −0.0191 (10) 0.0079 (8) 0.0068 (11)
C20 0.0600 (12) 0.0545 (11) 0.0612 (12) −0.0278 (9) 0.0280 (9) −0.0116 (10)
C21 0.0615 (11) 0.0347 (8) 0.0530 (10) −0.0109 (8) 0.0277 (9) 0.0040 (8)
C22 0.0487 (9) 0.0362 (8) 0.0393 (8) −0.0065 (7) 0.0151 (7) 0.0033 (7)
C23 0.0579 (11) 0.0366 (9) 0.0684 (12) −0.0104 (8) 0.0351 (9) −0.0055 (9)
C24 0.0626 (12) 0.0443 (10) 0.0778 (14) −0.0117 (9) 0.0464 (11) −0.0081 (9)
C25 0.0698 (12) 0.0532 (11) 0.0568 (11) −0.0191 (9) 0.0372 (10) −0.0017 (9)
C26 0.0457 (11) 0.0653 (13) 0.1038 (18) −0.0044 (9) 0.0356 (11) 0.0186 (13)

Geometric parameters (Å, º)

S1—C13 1.6674 (18) C11—H11B 0.9700
O1—C1 1.369 (2) C12—H12B 0.98 (2)
O1—C7 1.423 (2) C12—H12A 1.01 (2)
N1—C6 1.423 (2) C14—C17 1.508 (2)
N1—C8 1.457 (2) C15—C16 1.512 (3)
N1—C11 1.472 (2) C15—H15A 0.9700
N2—C12 1.434 (2) C15—H15B 0.9700
N2—C10 1.457 (2) C16—H16A 0.9600
N2—C9 1.459 (2) C16—H16B 0.9600
N3—C13 1.349 (2) C16—H16C 0.9600
N3—N4 1.3790 (19) C17—C23 1.538 (2)
N3—C12 1.472 (2) C17—C22 1.539 (2)
N4—C14 1.305 (2) C17—C18 1.545 (2)
N5—C13 1.378 (2) C18—C19 1.532 (2)
N5—C14 1.383 (2) C18—H18A 0.9700
N5—C15 1.470 (2) C18—H18B 0.9700
C1—C2 1.383 (3) C19—C20 1.524 (3)
C1—C6 1.413 (2) C19—C26 1.529 (3)
C2—C3 1.378 (3) C19—H19A 0.9800
C2—H2A 0.9300 C20—C21 1.520 (3)
C3—C4 1.362 (3) C20—H20A 0.9700
C3—H3A 0.9300 C20—H20B 0.9700
C4—C5 1.385 (3) C21—C25 1.519 (3)
C4—H4A 0.9300 C21—C22 1.525 (2)
C5—C6 1.390 (2) C21—H21A 0.9800
C5—H5A 0.9300 C22—H22A 0.9700
C7—H7A 0.9600 C22—H22B 0.9700
C7—H7B 0.9600 C23—C24 1.538 (2)
C7—H7C 0.9600 C23—H23A 0.9700
C8—C9 1.513 (2) C23—H23B 0.9700
C8—H8A 0.9700 C24—C25 1.519 (3)
C8—H8B 0.9700 C24—C26 1.526 (3)
C9—H9A 0.9700 C24—H24A 0.9800
C9—H9B 0.9700 C25—H25A 0.9700
C10—C11 1.513 (2) C25—H25B 0.9700
C10—H10A 0.9700 C26—H26A 0.9700
C10—H10B 0.9700 C26—H26B 0.9700
C11—H11A 0.9700
C1—O1—C7 117.79 (15) N5—C14—C17 127.20 (14)
C6—N1—C8 115.28 (13) N5—C15—C16 112.40 (15)
C6—N1—C11 114.41 (13) N5—C15—H15A 109.1
C8—N1—C11 110.33 (13) C16—C15—H15A 109.1
C12—N2—C10 114.93 (14) N5—C15—H15B 109.1
C12—N2—C9 114.58 (15) C16—C15—H15B 109.1
C10—N2—C9 109.92 (13) H15A—C15—H15B 107.9
C13—N3—N4 112.65 (13) C15—C16—H16A 109.5
C13—N3—C12 126.97 (15) C15—C16—H16B 109.5
N4—N3—C12 120.21 (15) H16A—C16—H16B 109.5
C14—N4—N3 104.94 (13) C15—C16—H16C 109.5
C13—N5—C14 108.06 (14) H16A—C16—H16C 109.5
C13—N5—C15 120.98 (14) H16B—C16—H16C 109.5
C14—N5—C15 130.96 (13) C14—C17—C23 108.67 (13)
O1—C1—C2 123.40 (16) C14—C17—C22 111.92 (13)
O1—C1—C6 116.34 (15) C23—C17—C22 108.02 (14)
C2—C1—C6 120.23 (17) C14—C17—C18 110.51 (13)
C3—C2—C1 121.06 (18) C23—C17—C18 108.05 (15)
C3—C2—H2A 119.5 C22—C17—C18 109.55 (13)
C1—C2—H2A 119.5 C19—C18—C17 109.64 (14)
C4—C3—C2 119.73 (19) C19—C18—H18A 109.7
C4—C3—H3A 120.1 C17—C18—H18A 109.7
C2—C3—H3A 120.1 C19—C18—H18B 109.7
C3—C4—C5 119.8 (2) C17—C18—H18B 109.7
C3—C4—H4A 120.1 H18A—C18—H18B 108.2
C5—C4—H4A 120.1 C20—C19—C26 109.87 (17)
C4—C5—C6 122.32 (18) C20—C19—C18 109.84 (17)
C4—C5—H5A 118.8 C26—C19—C18 109.18 (18)
C6—C5—H5A 118.8 C20—C19—H19A 109.3
C5—C6—C1 116.69 (16) C26—C19—H19A 109.3
C5—C6—N1 123.09 (15) C18—C19—H19A 109.3
C1—C6—N1 120.10 (15) C21—C20—C19 109.41 (15)
O1—C7—H7A 109.5 C21—C20—H20A 109.8
O1—C7—H7B 109.5 C19—C20—H20A 109.8
H7A—C7—H7B 109.5 C21—C20—H20B 109.8
O1—C7—H7C 109.5 C19—C20—H20B 109.8
H7A—C7—H7C 109.5 H20A—C20—H20B 108.2
H7B—C7—H7C 109.5 C25—C21—C20 110.15 (17)
N1—C8—C9 111.00 (14) C25—C21—C22 110.15 (15)
N1—C8—H8A 109.4 C20—C21—C22 109.18 (15)
C9—C8—H8A 109.4 C25—C21—H21A 109.1
N1—C8—H8B 109.4 C20—C21—H21A 109.1
C9—C8—H8B 109.4 C22—C21—H21A 109.1
H8A—C8—H8B 108.0 C21—C22—C17 110.05 (14)
N2—C9—C8 110.21 (15) C21—C22—H22A 109.7
N2—C9—H9A 109.6 C17—C22—H22A 109.7
C8—C9—H9A 109.6 C21—C22—H22B 109.7
N2—C9—H9B 109.6 C17—C22—H22B 109.7
C8—C9—H9B 109.6 H22A—C22—H22B 108.2
H9A—C9—H9B 108.1 C17—C23—C24 110.33 (14)
N2—C10—C11 109.91 (13) C17—C23—H23A 109.6
N2—C10—H10A 109.7 C24—C23—H23A 109.6
C11—C10—H10A 109.7 C17—C23—H23B 109.6
N2—C10—H10B 109.7 C24—C23—H23B 109.6
C11—C10—H10B 109.7 H23A—C23—H23B 108.1
H10A—C10—H10B 108.2 C25—C24—C26 109.76 (16)
N1—C11—C10 110.43 (14) C25—C24—C23 109.57 (17)
N1—C11—H11A 109.6 C26—C24—C23 109.29 (17)
C10—C11—H11A 109.6 C25—C24—H24A 109.4
N1—C11—H11B 109.6 C26—C24—H24A 109.4
C10—C11—H11B 109.6 C23—C24—H24A 109.4
H11A—C11—H11B 108.1 C21—C25—C24 109.14 (15)
N2—C12—N3 116.71 (13) C21—C25—H25A 109.9
N2—C12—H12B 113.0 (11) C24—C25—H25A 109.9
N3—C12—H12B 103.6 (10) C21—C25—H25B 109.9
N2—C12—H12A 108.6 (11) C24—C25—H25B 109.9
N3—C12—H12A 106.1 (11) H25A—C25—H25B 108.3
H12B—C12—H12A 108.5 (15) C24—C26—C19 109.21 (16)
N3—C13—N5 103.80 (14) C24—C26—H26A 109.8
N3—C13—S1 128.57 (13) C19—C26—H26A 109.8
N5—C13—S1 127.63 (14) C24—C26—H26B 109.8
N4—C14—N5 110.55 (13) C19—C26—H26B 109.8
N4—C14—C17 122.24 (15) H26A—C26—H26B 108.3
C13—N3—N4—C14 −0.07 (17) N3—N4—C14—N5 0.16 (17)
C12—N3—N4—C14 −175.71 (14) N3—N4—C14—C17 −178.86 (14)
C7—O1—C1—C2 10.9 (2) C13—N5—C14—N4 −0.20 (18)
C7—O1—C1—C6 −167.17 (15) C15—N5—C14—N4 179.95 (15)
O1—C1—C2—C3 −174.35 (18) C13—N5—C14—C17 178.76 (15)
C6—C1—C2—C3 3.7 (3) C15—N5—C14—C17 −1.1 (3)
C1—C2—C3—C4 −0.7 (3) C13—N5—C15—C16 80.4 (2)
C2—C3—C4—C5 −2.0 (3) C14—N5—C15—C16 −99.8 (2)
C3—C4—C5—C6 1.7 (3) N4—C14—C17—C23 −8.7 (2)
C4—C5—C6—C1 1.2 (3) N5—C14—C17—C23 172.44 (16)
C4—C5—C6—N1 177.19 (17) N4—C14—C17—C22 −127.92 (16)
O1—C1—C6—C5 174.34 (15) N5—C14—C17—C22 53.2 (2)
C2—C1—C6—C5 −3.8 (2) N4—C14—C17—C18 109.70 (18)
O1—C1—C6—N1 −1.8 (2) N5—C14—C17—C18 −69.2 (2)
C2—C1—C6—N1 −179.97 (15) C14—C17—C18—C19 −178.89 (16)
C8—N1—C6—C5 −7.3 (2) C23—C17—C18—C19 −60.1 (2)
C11—N1—C6—C5 122.18 (18) C22—C17—C18—C19 57.4 (2)
C8—N1—C6—C1 168.57 (15) C17—C18—C19—C20 −58.9 (2)
C11—N1—C6—C1 −61.93 (19) C17—C18—C19—C26 61.6 (2)
C6—N1—C8—C9 −172.41 (14) C26—C19—C20—C21 −59.0 (2)
C11—N1—C8—C9 56.12 (19) C18—C19—C20—C21 61.1 (2)
C12—N2—C9—C8 −169.87 (13) C19—C20—C21—C25 59.6 (2)
C10—N2—C9—C8 58.92 (17) C19—C20—C21—C22 −61.5 (2)
N1—C8—C9—N2 −57.44 (18) C25—C21—C22—C17 −60.62 (19)
C12—N2—C10—C11 169.35 (14) C20—C21—C22—C17 60.46 (19)
C9—N2—C10—C11 −59.63 (17) C14—C17—C22—C21 178.67 (14)
C6—N1—C11—C10 171.40 (13) C23—C17—C22—C21 59.08 (18)
C8—N1—C11—C10 −56.68 (17) C18—C17—C22—C21 −58.40 (18)
N2—C10—C11—N1 58.53 (17) C14—C17—C23—C24 179.37 (15)
C10—N2—C12—N3 69.0 (2) C22—C17—C23—C24 −59.0 (2)
C9—N2—C12—N3 −59.8 (2) C18—C17—C23—C24 59.4 (2)
C13—N3—C12—N2 100.2 (2) C17—C23—C24—C25 60.2 (2)
N4—N3—C12—N2 −84.8 (2) C17—C23—C24—C26 −60.1 (2)
N4—N3—C13—N5 −0.05 (17) C20—C21—C25—C24 −60.16 (19)
C12—N3—C13—N5 175.23 (14) C22—C21—C25—C24 60.3 (2)
N4—N3—C13—S1 179.88 (12) C26—C24—C25—C21 60.3 (2)
C12—N3—C13—S1 −4.8 (2) C23—C24—C25—C21 −59.7 (2)
C14—N5—C13—N3 0.14 (17) C25—C24—C26—C19 −60.0 (2)
C15—N5—C13—N3 −179.98 (13) C23—C24—C26—C19 60.2 (2)
C14—N5—C13—S1 −179.79 (12) C20—C19—C26—C24 59.2 (2)
C15—N5—C13—S1 0.1 (2) C18—C19—C26—C24 −61.3 (2)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C1–C6 benzene ring.

D—H···A D—H H···A D···A D—H···A
C11—H11A···O1 0.97 2.26 2.903 (2) 123
C18—H18A···Cgi 0.97 2.81 3.748 (2) 162

Symmetry code: (i) x−1, −y−1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5099).

References

  1. Al-Abdullah, E. S., Al-Tuwaijri, H. M., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2013). Acta Cryst. E69, o1813–o1814. [DOI] [PMC free article] [PubMed]
  2. Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug Res. 56, 40–47. [DOI] [PubMed]
  3. Al-Tamimi, A.-M. S., Al-Abdullah, E. S., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o685–o686. [DOI] [PMC free article] [PubMed]
  4. Al-Tamimi, A.-M. S., Alafeefy, A. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o683. [DOI] [PMC free article] [PubMed]
  5. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  6. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  8. El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113. [DOI] [PubMed]
  9. El-Emam, A. A., Alrashood, K. A., Al-Tamimi, A.-M. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o657–o658. [DOI] [PMC free article] [PubMed]
  10. El-Emam, A. A., Al-Tamimi, A.-S., Al-Omar, A. A., Alrashood, K. A. & Habib, E. E. (2013). Eur. J. Med. Chem. 68, 96–102. [DOI] [PubMed]
  11. El-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug Res. 41, 1260–1264. [PubMed]
  12. Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011. [DOI] [PubMed]
  13. Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Togo, Y., Hornick, R. B. & Dawkins, A. T. (1968). J. Am. Med. Assoc. 203, 1089–1094.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813032789/rz5099sup1.cif

e-70-00o25-sup1.cif (35.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813032789/rz5099Isup2.hkl

e-70-00o25-Isup2.hkl (197.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536813032789/rz5099Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES