Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Dec 14;70(Pt 1):o66. doi: 10.1107/S1600536813033497

N,N′-Bis(di­phenyl­meth­yl)benzene-1,4-di­amine

Aeed S Al-Fahdawi a,*, Hussain A Al-Kafajy a, Mohamad J Al-Jeboori b, Simon J Coles c, Claire Wilson d, Herman Potgieter e
PMCID: PMC3914097  PMID: 24527002

Abstract

The complete mol­ecule of the title compound, C32H28N2, is generated by crystallographic inversion symmetry. The dihedral angles between the central aromatic ring and the pendant adjacent rings are 61.37 (16) and 74.20 (14)°. The N—H group does not participate in hydrogen bonds and there are no aromatic π–π stacking inter­actions in the crystal.

Related literature  

The reduction of the Schiff-base was as described in Higuchi et al. (2003) and Higuchi et al. (2000). For the use of dendrimers in the formation of new types of organic-metallic hybrid materials, see: Kim et al. (2005); for drug generation, see: Basavaraj et al. (2009). For related structures, see: Ge & Ng (2006); Yang et al. (2007); Xia et al. (2007). Data were collected and processed according to Coles & Gale (2012).graphic file with name e-70-00o66-scheme1.jpg

Experimental  

Crystal data  

  • C32H28N2

  • M r = 440.56

  • Monoclinic, Inline graphic

  • a = 14.784 (2) Å

  • b = 5.5853 (8) Å

  • c = 14.896 (2) Å

  • β = 107.914 (8)°

  • V = 1170.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.1 × 0.09 × 0.02 mm

Data collection  

  • Rigaku AFC12 (Right) diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012) T min = 0.345, T max = 1.000

  • 10305 measured reflections

  • 2664 independent reflections

  • 1254 reflections with I > 2σ(I)

  • R int = 0.125

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.077

  • wR(F 2) = 0.208

  • S = 0.97

  • 2664 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrystalClear-SM Expert (Rigaku, 2012); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813033497/hb7158sup1.cif

e-70-00o66-sup1.cif (23.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813033497/hb7158Isup2.hkl

e-70-00o66-Isup2.hkl (130.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536813033497/hb7158Isup3.mol

Supporting information file. DOI: 10.1107/S1600536813033497/hb7158Isup4.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the ‘Iraqi Ministry for Higher Education’ for providing six months funding for Mr Aeed S. Al-Fahdawi’s PhD scholarship.

supplementary crystallographic information

1. Comment

Bis-amine compounds are essential building blocks to produce branched or dendritic polymers. Dendrimers are an interesting class of materials which are based on bis-aromatic imine and amine precursors. These polymeric materials have attracted increasing attention due to their functional coordination groups, which can trap many metal ions or metal clusters within the voids in the dendrimers. This can lead to the formation of new types of organic-metallic hybrid nanomaterials (Kim et al., 2005). Furthermore, the polyvalent nature of dendrimers is a key factor in generating a new class of drugs with much improved and acceptable pharmacokinetic profiles (Basavaraj et al., 2009). This paper reports on a new addition to the bis-amine compounds and its chemical and physical features.

The compound, with a molar mass of 440.56 g mol-1, crystallizes in a monoclinic crystal structure with a space group notation of P21/n and had a calculated density of 1.250 g cm-3. The asymmetric unit consists of half the molecule, the molecule is completed by inversion symmetry. Infrared spectra indicates typical absorbance bands of the functional phenyl group and amine –C=N group at 1570 and 1620 cm-1, respectively. The positive ES mass spectrum of the bis-amine showed a parent ion peak at m/z = 441.2362 (M+H)+, corresponding to C32H28N2, for which the required value = 440.2252.

2. Experimental

The bis-amine {N1,N4-dibenzhydrylbenzene-1,4-diamine} was prepared in a two-step procedure as follows: (i) A Schiff-base {N1,N4-bis-(diphenylmethylene)benzene-1,4-diamine} was synthesized by adopting a conventional procedure (Higuchi et al., 2000) as follows: A mixture of benzophenone (1.69 g, 9.25 mmol), p-phenylenediamine (0.500 g, 4.62 mmol), and 1,4-diaza-bicyclo-[2.2.2]octane (DABCO) (3.11 g, 27.7 mmol) in chlorobenzene (40 ml) was stirred at room temperature for 10 min. Titanium (IV) tetrachloride (1.32 g, 6.93 mmol) dissolved in chlorobenzene (10 ml) was added dropwise using a pressure-equalized dropping funnel. The reaction mixture was heated in an oil bath at 125 °C for 24 h. The precipitate was removed by filtration, and then the filtrate was concentrated. The Schiff-base product (yield: 1.83 g, 91%) was isolated by silica gel uniplate chromatography with an eluent mixture of hexane:ethylacetate; 9:1, Rf = 0.25. (ii)The reduction of the Schiff-base was achieved using conventional procedures (Higuchi et al., 2000; 2003) as follows: NaBH4 (0.06 g, 1.74 mmol) was added cautiously and in small portions to a mixture of the Schiff-base {N1,N4-bis-(diphenylmethyene)benzene-1,4-diamine} (0.500 g, 0.437 mmol), and SnCl2 (0.17 g, 0.87 mmol) dissolved in a mixture of dichloromethane/acetonitrile (1:1) (200 ml). The reaction mixture was stirred at room temperature for 10 min under an Argon atmosphere. The crude mixture was washed with an aqueous solution of 1% triethylamine (4x100), and the organic layer was dried over Na2SO4. The secondary bis-amine was purified from the crude product by uniplate silica gel chromatography with eluent (hexane: acetonitrile: chloroform; 8: 2: 1), Rf = 0.5. Yield: 0.98 g, 54.14%. Colourless plates were obtained from slow evaporation of a methanol solution of the bis-amine in air.

3. Refinement

Data were collected and processed according to Coles & Gale (2012). Hydrogen atoms were placed in geometrically calculated positions and included as part of a riding model with Uiso values set at 1.2 times Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) 1 - x, 1 - y, -z.

Crystal data

C32H28N2 F(000) = 468
Mr = 440.56 Dx = 1.250 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71075 Å
a = 14.784 (2) Å Cell parameters from 5636 reflections
b = 5.5853 (8) Å θ = 3.4–27.5°
c = 14.896 (2) Å µ = 0.07 mm1
β = 107.914 (8)° T = 100 K
V = 1170.4 (3) Å3 Plate, colourless
Z = 2 0.1 × 0.09 × 0.02 mm

Data collection

Rigaku AFC12 (Right) diffractometer 2664 independent reflections
Radiation source: Rotating Anode 1254 reflections with I > 2σ(I)
Confocal monochromator Rint = 0.125
Detector resolution: 28.5714 pixels mm-1 θmax = 27.5°, θmin = 3.4°
profile data from ω–scans h = −19→18
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012) k = −7→6
Tmin = 0.345, Tmax = 1.000 l = −16→19
10305 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.077 H-atom parameters constrained
wR(F2) = 0.208 w = 1/[σ2(Fo2) + (0.0886P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97 (Δ/σ)max < 0.001
2664 reflections Δρmax = 0.33 e Å3
155 parameters Δρmin = −0.29 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dual Extinction coefficient: 0.026 (5)

Special details

Experimental. FT—IR data were recorded on a Nicolet ATR FT—IR, while NMR data were collected on a Bruker 400 MHz s pectrometer in CD2Cl2– d2 solutions. The assignment of the chemical shifts for the NMR data were made following numbering shown in structure B. Schiff-base {N1,N4-bis(diphenylmethylene)benzene-1,4-diamine}IR (ATR cm-1) 1620 (C=N), 1597 and 1570 (phenyl). NMR data (p.p.m.), δH (400 MHz, CD2Cl2): 6.47 (4H, m; C3, 3`, 11, 11`-H), 7.06 (2H, d, J = 7.33 Hz; C15, 15`-H), 7.73 (2H, d, J = 7.33 Hz; C16, 16`-H), 7.27–7.40 (20H, m; aromatic-H); δC (100.63 MHz, CD2Cl2): 121.53–136.75, (aromatic carbon); 140.12 (C6, 6`,8, 8`); 147.37 (C14, 14`); 168.24 (C7, 7`); DEPT 13 C NMR exhibited no signals between 140–170 p.p.m.. The positive ES mass spectrum of the bis-amine showed the parent ion peak at m/z = 441.2362 (M+H)+ (95%) corresponding to C32H28N2; required value = 440.2252. Peaks detected at m/z =247.16 (100%) and 167.09 (98%), correspond to [M-(ph)2CH2)]+ and [M-(ph)2CH2+H2N2ph)]+, respectively.bis-amine {N1,N4-dibenzhydrylbenzene-1,4-diamine IR (ATR cm-1): 3392 (N—H), 2932; 2873 (C—H) aliphatic, 1599 and 1510 (phenyl). NMR data (p.p.m.), δH (400 MHz, CD2Cl2): 3.95 (2H, S, Na, a`-H), 5.36 (2H, S; C7, 7`-H), 6.37 (4H, d, J=7.33 Hz; C15, 15`, 16, 16`-H), 7.21–7.36 (20H, m, Ar—H); δC (100.63 MHz, CD2Cl2): 49.10 (C7, 7`); 115.21 (C15, 15`, 16, 16`); 127.25–129.04 (aromatic carbon); 140 (C6, 6`, 8, 8`); 144.07 (C14, 14`), DEPT 13 C NMR exhibited no signals between 140–145 p.p.m.. The positive ES mass spectrum of the bis-amine showed the parent ion peak at m/z = 441.2362 (M+H)+ (95%) corresponding to C32H28N2; required value = 440.2252. Peaks detected at m/z =247.16 (100%) and 167.09 (98%), correspond to [M-(ph)2CH2)]+ and [M-(ph)2CH2+H2N2ph)]+, respectively.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.44891 (16) 0.4954 (4) 0.1672 (2) 0.0366 (7)
H1 0.4144 0.6110 0.1765 0.044*
C2 0.47809 (19) 0.3103 (5) 0.2375 (2) 0.0294 (8)
H2 0.4635 0.1559 0.2050 0.035*
C3 0.58440 (19) 0.3135 (5) 0.2909 (2) 0.0273 (7)
C4 0.6426 (2) 0.5024 (5) 0.2829 (2) 0.0295 (8)
H4 0.6169 0.6316 0.2440 0.035*
C5 0.7386 (2) 0.4993 (5) 0.3323 (2) 0.0314 (8)
H5 0.7768 0.6270 0.3265 0.038*
C6 0.7785 (2) 0.3094 (5) 0.3901 (2) 0.0326 (8)
H6 0.8431 0.3080 0.4231 0.039*
C7 0.7208 (2) 0.1209 (5) 0.3983 (2) 0.0329 (8)
H7 0.7468 −0.0081 0.4371 0.039*
C8 0.6248 (2) 0.1228 (5) 0.3492 (2) 0.0325 (8)
H8 0.5868 −0.0051 0.3554 0.039*
C9 0.41899 (19) 0.3290 (5) 0.3050 (2) 0.0303 (8)
C10 0.4294 (2) 0.5250 (5) 0.3644 (3) 0.0392 (9)
H10 0.4723 0.6451 0.3626 0.047*
C11 0.3771 (2) 0.5438 (6) 0.4259 (3) 0.0433 (9)
H11 0.3845 0.6767 0.4651 0.052*
C12 0.3137 (2) 0.3662 (6) 0.4296 (3) 0.0416 (9)
H12 0.2782 0.3785 0.4712 0.050*
C13 0.3032 (2) 0.1706 (6) 0.3712 (3) 0.0421 (10)
H13 0.2614 0.0487 0.3742 0.051*
C14 0.3545 (2) 0.1546 (5) 0.3081 (3) 0.0386 (9)
H14 0.3454 0.0245 0.2673 0.046*
C15 0.47494 (18) 0.4941 (5) 0.0834 (2) 0.0283 (8)
C16 0.5290 (2) 0.3109 (5) 0.0627 (2) 0.0315 (8)
H16 0.5489 0.1834 0.1042 0.038*
C17 0.44676 (19) 0.6813 (5) 0.0199 (2) 0.0294 (8)
H17 0.4107 0.8049 0.0332 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0298 (14) 0.0449 (16) 0.039 (2) 0.0124 (13) 0.0167 (14) 0.0079 (14)
C2 0.0222 (15) 0.0330 (16) 0.032 (2) 0.0024 (13) 0.0070 (14) −0.0015 (14)
C3 0.0212 (14) 0.0322 (16) 0.030 (2) −0.0007 (13) 0.0109 (14) −0.0032 (14)
C4 0.0244 (15) 0.0290 (15) 0.035 (2) 0.0028 (13) 0.0094 (14) 0.0020 (14)
C5 0.0255 (15) 0.0340 (17) 0.035 (2) −0.0023 (14) 0.0094 (15) −0.0016 (15)
C6 0.0218 (15) 0.0415 (18) 0.034 (2) 0.0026 (14) 0.0076 (15) −0.0063 (15)
C7 0.0279 (16) 0.0329 (17) 0.039 (2) 0.0084 (14) 0.0125 (16) 0.0026 (15)
C8 0.0257 (16) 0.0318 (17) 0.042 (2) 0.0006 (13) 0.0137 (16) 0.0046 (15)
C9 0.0210 (14) 0.0349 (17) 0.035 (2) 0.0010 (14) 0.0089 (14) 0.0025 (15)
C10 0.0319 (17) 0.0354 (18) 0.053 (3) −0.0069 (15) 0.0177 (18) −0.0066 (17)
C11 0.0378 (19) 0.047 (2) 0.048 (3) 0.0018 (17) 0.0177 (18) −0.0068 (18)
C12 0.0345 (18) 0.050 (2) 0.048 (3) 0.0093 (17) 0.0248 (18) 0.0082 (18)
C13 0.0324 (18) 0.049 (2) 0.053 (3) −0.0051 (16) 0.0253 (18) 0.0042 (18)
C14 0.0308 (17) 0.0357 (17) 0.053 (3) −0.0058 (15) 0.0187 (17) −0.0035 (16)
C15 0.0156 (13) 0.0345 (16) 0.032 (2) −0.0022 (13) 0.0039 (14) −0.0001 (15)
C16 0.0219 (14) 0.0351 (17) 0.037 (2) 0.0020 (13) 0.0086 (14) 0.0049 (15)
C17 0.0182 (14) 0.0350 (17) 0.036 (2) 0.0025 (13) 0.0106 (14) −0.0022 (15)

Geometric parameters (Å, º)

N1—H1 0.8600 C9—C10 1.386 (4)
N1—C2 1.440 (4) C9—C14 1.373 (4)
N1—C15 1.415 (4) C10—H10 0.9300
C2—H2 0.9800 C10—C11 1.372 (4)
C2—C3 1.528 (4) C11—H11 0.9300
C2—C9 1.525 (4) C11—C12 1.378 (4)
C3—C4 1.389 (4) C12—H12 0.9300
C3—C8 1.388 (4) C12—C13 1.375 (5)
C4—H4 0.9300 C13—H13 0.9300
C4—C5 1.384 (4) C13—C14 1.380 (4)
C5—H5 0.9300 C14—H14 0.9300
C5—C6 1.379 (4) C15—C16 1.391 (4)
C6—H6 0.9300 C15—C17 1.385 (4)
C6—C7 1.384 (4) C16—H16 0.9300
C7—H7 0.9300 C16—C17i 1.384 (4)
C7—C8 1.382 (4) C17—C16i 1.384 (4)
C8—H8 0.9300 C17—H17 0.9300
C2—N1—H1 118.8 C10—C9—C2 120.1 (2)
C15—N1—H1 118.8 C14—C9—C2 121.2 (3)
C15—N1—C2 122.4 (2) C14—C9—C10 118.7 (3)
N1—C2—H2 107.6 C9—C10—H10 119.6
N1—C2—C3 113.6 (2) C11—C10—C9 120.8 (3)
N1—C2—C9 109.0 (2) C11—C10—H10 119.6
C3—C2—H2 107.6 C10—C11—H11 120.0
C9—C2—H2 107.6 C10—C11—C12 120.1 (3)
C9—C2—C3 111.2 (3) C12—C11—H11 120.0
C4—C3—C2 121.9 (3) C11—C12—H12 120.3
C8—C3—C2 119.5 (2) C13—C12—C11 119.5 (3)
C8—C3—C4 118.6 (3) C13—C12—H12 120.3
C3—C4—H4 119.8 C12—C13—H13 119.9
C5—C4—C3 120.4 (3) C12—C13—C14 120.3 (3)
C5—C4—H4 119.8 C14—C13—H13 119.9
C4—C5—H5 119.6 C9—C14—C13 120.6 (3)
C6—C5—C4 120.9 (3) C9—C14—H14 119.7
C6—C5—H5 119.6 C13—C14—H14 119.7
C5—C6—H6 120.6 C16—C15—N1 122.1 (3)
C5—C6—C7 118.9 (3) C17—C15—N1 119.5 (3)
C7—C6—H6 120.6 C17—C15—C16 118.5 (3)
C6—C7—H7 119.7 C15—C16—H16 120.1
C8—C7—C6 120.6 (3) C17i—C16—C15 119.9 (3)
C8—C7—H7 119.7 C17i—C16—H16 120.1
C3—C8—H8 119.7 C15—C17—H17 119.2
C7—C8—C3 120.7 (3) C16i—C17—C15 121.7 (3)
C7—C8—H8 119.7 C16i—C17—H17 119.2
N1—C2—C3—C4 10.4 (4) C4—C5—C6—C7 −0.2 (5)
N1—C2—C3—C8 −169.4 (3) C5—C6—C7—C8 0.1 (4)
N1—C2—C9—C10 −67.2 (4) C6—C7—C8—C3 0.0 (5)
N1—C2—C9—C14 112.5 (3) C8—C3—C4—C5 −0.1 (4)
N1—C15—C16—C17i −179.5 (3) C9—C2—C3—C4 −113.0 (3)
N1—C15—C17—C16i 179.5 (3) C9—C2—C3—C8 67.2 (3)
C2—N1—C15—C16 1.3 (4) C9—C10—C11—C12 0.4 (5)
C2—N1—C15—C17 −178.1 (3) C10—C9—C14—C13 −1.9 (5)
C2—C3—C4—C5 −180.0 (3) C10—C11—C12—C13 0.0 (5)
C2—C3—C8—C7 179.9 (3) C11—C12—C13—C14 −1.3 (5)
C2—C9—C10—C11 −179.7 (3) C12—C13—C14—C9 2.3 (5)
C2—C9—C14—C13 178.4 (3) C14—C9—C10—C11 0.6 (5)
C3—C2—C9—C10 58.8 (4) C15—N1—C2—C3 69.6 (3)
C3—C2—C9—C14 −121.5 (3) C15—N1—C2—C9 −165.8 (2)
C3—C4—C5—C6 0.2 (5) C16—C15—C17—C16i 0.1 (5)
C4—C3—C8—C7 0.1 (4) C17—C15—C16—C17i −0.1 (4)

Symmetry code: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7158).

References

  1. Basavaraj, B. V., Furtado, F., Bharath, S., Deveswaran, R., Sindhu, A. & Madhavan, V. (2009). J. Pharm. Res, 2, 970–974. [PubMed]
  2. Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Ge, W.-Z. & Ng, S. W. (2006). Acta Cryst. E62, o3784–o3785.
  5. Higuchi, M., Shiki, S. & Yamamoto, K. (2000). Org. Lett. 2, 3079–3082. [DOI] [PubMed]
  6. Higuchi, M., Tsuruta, M., Chiba, H., Shiki, S. & Yamamoto, K. (2003). J. Am. Chem. Soc. 125, 9988–9997. [DOI] [PubMed]
  7. Kim, Y.-G., Garcia-Martines, J. C. & Crooks, R. M. (2005). Langmuir, 21, 5485–5491. [DOI] [PubMed]
  8. Rigaku (2012). CrystalClear-SM Expert Rigaku Americas Corporation, The Woodlands, Texas, USA.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Xia, H.-T., Liu, Y.-F., Yang, S.-P. & Wang, D.-Q. (2007). Acta Cryst. E63, o40–o41.
  11. Yang, S.-P., Li-Jun, H., Da-Qi, W. & Tie-Zhu, D. (2007). Acta Cryst. E63, o244–o246.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813033497/hb7158sup1.cif

e-70-00o66-sup1.cif (23.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813033497/hb7158Isup2.hkl

e-70-00o66-Isup2.hkl (130.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536813033497/hb7158Isup3.mol

Supporting information file. DOI: 10.1107/S1600536813033497/hb7158Isup4.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES