Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Dec 18;70(Pt 1):o68–o69. doi: 10.1107/S1600536813033540

Ethyl 2-[2-(2,4-diphenyl-3-aza­bicyclo­[3.3.1]nonan-9-yl­idene)hydrazin-1-yl]-4-methyl-1,3-thia­zole-5-carboxyl­ate di­methyl­formamide monosolvate

S Jothivel a, S Kabilan a,*
PMCID: PMC3914099  PMID: 24527004

Abstract

In the title mol­ecule, C27H30N4O2S·C3H7NO, the fused piperidine and cyclo­hexane rings adopt a twin chair conformation and the phenyl groups occupy equatorial sites. The phenyl rings make a dihedral angle of 40.74 (2)°. In the crystal, the di­methyl­formamide solvent mol­ecule is connected to the main mol­ecule by an N—H⋯O hydrogen bond. An additional N—H⋯O hydrogen bond connects mol­ecules into chains along [100]. Pairs of weak C—H⋯O hydrogen bonds connect inversion-related chains. The ethyl group was refined as disordered over two sets of sites with an occupancy ratio of 0.660 (17):0.340 (17).

Related literature  

For the biological activity of related structures, see: Ramachandran et al. (2009); Hutchinson et al. (2002); Bondock et al. (2007). For bicyclic compounds, see: Jeyaraman & Avila (1981).graphic file with name e-70-00o68-scheme1.jpg

Experimental  

Crystal data  

  • C27H30N4O2S·C3H7NO

  • M r = 547.71

  • Monoclinic, Inline graphic

  • a = 12.700 (5) Å

  • b = 19.427 (5) Å

  • c = 13.203 (5) Å

  • β = 115.249 (5)°

  • V = 2946.3 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.35 × 0.35 × 0.30 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.937, T max = 0.965

  • 25815 measured reflections

  • 5179 independent reflections

  • 3606 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.154

  • S = 1.01

  • 5179 reflections

  • 379 parameters

  • 40 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, 1. DOI: 10.1107/S1600536813033540/lh5671sup1.cif

e-70-00o68-sup1.cif (37KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813033540/lh5671Isup2.hkl

e-70-00o68-Isup2.hkl (253.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536813033540/lh5671Isup3.cdx

Supporting information file. DOI: 10.1107/S1600536813033540/lh5671Isup4.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O1i 0.93 2.41 3.284 (4) 156
N1—H1A⋯O1ii 0.84 (2) 2.59 (2) 3.380 (4) 157 (2)
N3—H3A⋯O3 0.85 (2) 1.99 (2) 2.843 (4) 173 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

SJ is thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for the award of a Senior Research Fellowship through research grant No. 01/2454/11/EMR-II. The authors are thankful to the SAIF, IIT Madras, for the data collection.

supplementary crystallographic information

1. Comment

Thiazoles are an interesting unit in medicinal chemistry and are responsible for numerous pharmacological and biological properties (Hutchinson et al. 2002; Bondock et al., 2007; Ramachandran et al., 2009). This has piqued our interest in the synthesis of thiazole containing compounds. The importance of bicyclic compounds as intermediates in the synthesis of a several physiologically active compounds have been reviewed by Jeyaraman & Avila (1981). Moreover, these bridged bicyclic compounds exhibit twin chair, chair–boat or twin boat conformations and possess interesting stereochemistries. In order to investigate the change in molecular conformation of the piperidine and cyclohexane rings, the X-ray structure determination of the title compound was carried out. The six–membered heterocyclic piperidine ring (Fig. 1) adopts the expected chair conformation. The two phenyl rings form a dihedral angle of 40.74 (2)°. In the crystal the dimethylformamide solvent molecule is connected to the main molecule by an N—H···O hydrogen bond. An additional N—H···O hydrogen bond connects molecules into chains along [100] (Fig. 2). Weak C—H···O hydrogen bonds connect pairs of inversion related chains. The ethyl group was refined as disordered over two sets of sites with a 0.660 (17): 0.340 (17) ratio of occupancies.

2. Experimental

To a boiling solution of the bicyclic thiosemicarbazone (0.01 mol) in ethanolic–chloroform (1:1 / v:v), ethyl-2-chloroacetoacetate(0.01 mol), sodium acetate trihydrate (0.02 mol) and a few drops of acetic acid were added and refluxed for about 5–6 h. After the completion of reaction, excess of solvent was removed under reduced pressure and poured into water. After work–up, the solid was separated and purified by column chromatography using benzene–ethyl acetate (9:1 / v:v) as eluent on neutral alumina. Colourless crystals were grown by slow evaporation method using dimethylformamide as the solvent.

3. Refinement

H atoms bonded to C atoms were included in calculated positions with C—H = 0.93-0.98Å and included in the refinement with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). H atoms bonded to N atoms were refined independently with isotropic displacment parameters.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Part of the crystal structure with hydrogen bonds shown as dashed lines.

Crystal data

C27H30N4O2S·C3H7NO F(000) = 1168
Mr = 547.71 Dx = 1.235 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6962 reflections
a = 12.700 (5) Å θ = 2.1–22.4°
b = 19.427 (5) Å µ = 0.15 mm1
c = 13.203 (5) Å T = 293 K
β = 115.249 (5)° Block, colourless
V = 2946.3 (18) Å3 0.35 × 0.35 × 0.30 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 5179 independent reflections
Radiation source: fine-focus sealed tube 3606 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
ω and φ sacn scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 1999) h = −15→15
Tmin = 0.937, Tmax = 0.965 k = −20→23
25815 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0579P)2 + 2.3626P] where P = (Fo2 + 2Fc2)/3
5179 reflections (Δ/σ)max = 0.001
379 parameters Δρmax = 0.56 e Å3
40 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.0735 (2) 0.24044 (14) 0.5466 (2) 0.0499 (7)
C2 0.0996 (3) 0.27051 (16) 0.6495 (3) 0.0647 (8)
H2 0.0572 0.2579 0.6892 0.078*
C3 0.1867 (3) 0.31863 (18) 0.6946 (3) 0.0815 (11)
H3 0.2018 0.3387 0.7634 0.098*
C4 0.2508 (3) 0.33680 (19) 0.6382 (4) 0.0891 (12)
H4 0.3109 0.3686 0.6690 0.107*
C5 0.2264 (3) 0.3081 (2) 0.5363 (4) 0.0902 (12)
H5 0.2692 0.3211 0.4972 0.108*
C6 0.1386 (3) 0.25983 (18) 0.4907 (3) 0.0706 (9)
H6 0.1234 0.2403 0.4215 0.085*
C7 −0.0232 (2) 0.18797 (13) 0.5011 (2) 0.0450 (6)
H7 −0.0184 0.1591 0.5638 0.054*
C8 −0.0971 (2) 0.08953 (13) 0.3738 (2) 0.0445 (6)
H8 −0.0939 0.0613 0.4365 0.053*
C9 −0.0710 (2) 0.04318 (13) 0.2953 (2) 0.0452 (6)
C10 −0.0280 (2) 0.06844 (15) 0.2225 (2) 0.0546 (7)
H10 −0.0154 0.1155 0.2208 0.066*
C11 −0.0035 (3) 0.02520 (19) 0.1523 (3) 0.0673 (9)
H11 0.0247 0.0434 0.1036 0.081*
C12 −0.0204 (3) −0.0437 (2) 0.1539 (3) 0.0750 (10)
H12 −0.0027 −0.0727 0.1073 0.090*
C13 −0.0633 (3) −0.07009 (17) 0.2242 (3) 0.0743 (10)
H13 −0.0757 −0.1172 0.2248 0.089*
C14 −0.0887 (3) −0.02709 (15) 0.2951 (3) 0.0613 (8)
H14 −0.1180 −0.0458 0.3427 0.074*
C15 −0.2198 (2) 0.12259 (15) 0.3180 (2) 0.0490 (7)
H15 −0.2783 0.0858 0.2944 0.059*
C16 −0.2341 (2) 0.16510 (14) 0.4064 (2) 0.0472 (6)
C17 −0.1453 (2) 0.22093 (14) 0.4488 (2) 0.0495 (7)
H17 −0.1569 0.2461 0.5076 0.059*
C18 −0.1687 (3) 0.27046 (16) 0.3508 (3) 0.0626 (8)
H18A −0.2426 0.2933 0.3319 0.075*
H18B −0.1086 0.3055 0.3749 0.075*
C19 −0.1718 (3) 0.23575 (17) 0.2467 (3) 0.0665 (9)
H19A −0.0928 0.2250 0.2583 0.080*
H19B −0.2043 0.2675 0.1841 0.080*
C20 −0.2433 (2) 0.17010 (17) 0.2176 (2) 0.0625 (8)
H20A −0.2274 0.1449 0.1623 0.075*
H20B −0.3252 0.1823 0.1837 0.075*
C21 −0.4752 (2) 0.10489 (15) 0.4414 (2) 0.0518 (7)
C22 −0.6309 (2) 0.06611 (18) 0.4541 (3) 0.0641 (9)
C23 −0.5903 (3) 0.10747 (18) 0.5450 (3) 0.0670 (9)
C24 −0.6432 (4) 0.1188 (2) 0.6213 (4) 0.0859 (12)
C27 −0.7378 (3) 0.0215 (2) 0.4136 (4) 0.0902 (12)
H27A −0.7461 −0.0024 0.3470 0.135*
H27B −0.8051 0.0498 0.3974 0.135*
H27C −0.7305 −0.0113 0.4706 0.135*
C28 −0.7208 (4) −0.0655 (2) 0.1020 (4) 0.1106 (15)
H28A −0.7792 −0.0754 0.0281 0.166*
H28B −0.7567 −0.0450 0.1455 0.166*
H28C −0.6827 −0.1074 0.1371 0.166*
C29 −0.6557 (3) 0.0071 (2) −0.0138 (3) 0.0943 (12)
H29C −0.6091 0.0475 −0.0054 0.141*
H29A −0.7365 0.0185 −0.0551 0.141*
H29B −0.6344 −0.0275 −0.0534 0.141*
C30 −0.5483 (3) 0.00313 (18) 0.1851 (3) 0.0675 (8)
H30 −0.5396 −0.0152 0.2533 0.081*
N1 −0.00799 (18) 0.14310 (11) 0.41935 (18) 0.0453 (5)
N2 −0.31082 (18) 0.16070 (12) 0.44462 (18) 0.0512 (6)
N3 −0.39631 (19) 0.11185 (14) 0.3983 (2) 0.0567 (6)
N4 −0.56551 (19) 0.06438 (13) 0.3952 (2) 0.0583 (6)
N5 −0.6363 (2) −0.01846 (13) 0.0948 (2) 0.0637 (7)
O1 −0.7381 (2) 0.09901 (17) 0.6088 (3) 0.1174 (11)
O2 −0.5722 (3) 0.15330 (17) 0.7104 (2) 0.1002 (9)
O3 −0.4768 (2) 0.04548 (16) 0.1866 (2) 0.0917 (8)
S1 −0.46094 (7) 0.14717 (5) 0.56068 (7) 0.0648 (3)
C25 −0.588 (2) 0.1963 (16) 0.8026 (13) 0.120 (6) 0.340 (17)
H25A −0.5743 0.2446 0.7939 0.144* 0.340 (17)
H25B −0.6672 0.1914 0.7946 0.144* 0.340 (17)
C26 −0.5059 (18) 0.1725 (11) 0.9147 (13) 0.091 (5) 0.340 (17)
H26A −0.5358 0.1840 0.9682 0.137* 0.340 (17)
H26B −0.4319 0.1945 0.9354 0.137* 0.340 (17)
H26C −0.4965 0.1235 0.9135 0.137* 0.340 (17)
C25' −0.6228 (7) 0.1578 (6) 0.7918 (6) 0.085 (2) 0.660 (17)
H25C −0.6998 0.1783 0.7589 0.103* 0.660 (17)
H25D −0.6268 0.1130 0.8225 0.103* 0.660 (17)
C26' −0.5381 (12) 0.2028 (9) 0.8765 (14) 0.140 (5) 0.660 (17)
H26D −0.5628 0.2118 0.9345 0.210* 0.660 (17)
H26E −0.5326 0.2455 0.8423 0.210* 0.660 (17)
H26F −0.4633 0.1808 0.9081 0.210* 0.660 (17)
H1A 0.0570 (18) 0.1231 (13) 0.451 (2) 0.051 (8)*
H3A −0.415 (2) 0.0916 (13) 0.3356 (17) 0.051 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0418 (14) 0.0513 (16) 0.0553 (16) −0.0015 (12) 0.0194 (12) −0.0048 (13)
C2 0.0544 (17) 0.070 (2) 0.073 (2) −0.0053 (15) 0.0304 (16) −0.0243 (17)
C3 0.064 (2) 0.075 (2) 0.096 (3) −0.0101 (18) 0.026 (2) −0.040 (2)
C4 0.065 (2) 0.070 (2) 0.118 (3) −0.0231 (18) 0.025 (2) −0.023 (2)
C5 0.078 (2) 0.093 (3) 0.107 (3) −0.034 (2) 0.047 (2) −0.001 (2)
C6 0.069 (2) 0.080 (2) 0.068 (2) −0.0245 (17) 0.0339 (17) −0.0077 (17)
C7 0.0438 (14) 0.0508 (15) 0.0434 (14) −0.0053 (12) 0.0215 (12) −0.0018 (12)
C8 0.0411 (13) 0.0510 (15) 0.0436 (14) −0.0048 (12) 0.0203 (11) −0.0011 (12)
C9 0.0353 (13) 0.0489 (16) 0.0490 (15) −0.0025 (11) 0.0158 (11) −0.0046 (12)
C10 0.0482 (16) 0.0595 (17) 0.0653 (18) −0.0076 (13) 0.0331 (14) −0.0098 (15)
C11 0.0583 (18) 0.083 (2) 0.072 (2) 0.0003 (16) 0.0382 (17) −0.0126 (18)
C12 0.077 (2) 0.079 (3) 0.070 (2) 0.0138 (19) 0.0332 (19) −0.0153 (19)
C13 0.091 (2) 0.0468 (18) 0.071 (2) 0.0058 (17) 0.0211 (19) −0.0102 (16)
C14 0.0672 (19) 0.0564 (18) 0.0578 (18) −0.0036 (15) 0.0242 (15) 0.0037 (15)
C15 0.0359 (13) 0.0662 (18) 0.0490 (15) −0.0060 (12) 0.0220 (12) −0.0080 (13)
C16 0.0380 (13) 0.0634 (17) 0.0438 (14) 0.0022 (12) 0.0210 (12) −0.0036 (13)
C17 0.0449 (14) 0.0598 (17) 0.0525 (16) −0.0029 (13) 0.0290 (13) −0.0102 (13)
C18 0.0561 (17) 0.0620 (19) 0.075 (2) 0.0106 (15) 0.0330 (16) 0.0056 (16)
C19 0.0674 (19) 0.078 (2) 0.0617 (19) 0.0187 (17) 0.0348 (16) 0.0212 (17)
C20 0.0484 (16) 0.093 (2) 0.0455 (16) 0.0174 (16) 0.0193 (13) −0.0005 (16)
C21 0.0392 (14) 0.0680 (18) 0.0523 (16) 0.0086 (13) 0.0235 (13) 0.0115 (14)
C22 0.0426 (16) 0.077 (2) 0.080 (2) 0.0187 (15) 0.0330 (16) 0.0376 (19)
C23 0.0543 (18) 0.085 (2) 0.079 (2) 0.0233 (17) 0.0450 (17) 0.037 (2)
C24 0.080 (3) 0.114 (3) 0.086 (3) 0.041 (2) 0.057 (2) 0.050 (2)
C27 0.0486 (18) 0.098 (3) 0.130 (3) 0.0033 (18) 0.044 (2) 0.033 (2)
C28 0.109 (3) 0.117 (3) 0.105 (3) −0.050 (3) 0.045 (3) −0.007 (3)
C29 0.074 (2) 0.134 (4) 0.063 (2) −0.019 (2) 0.0183 (18) 0.007 (2)
C30 0.061 (2) 0.078 (2) 0.060 (2) 0.0036 (18) 0.0231 (17) −0.0044 (17)
N1 0.0351 (11) 0.0515 (13) 0.0495 (13) −0.0012 (10) 0.0182 (10) −0.0055 (11)
N2 0.0390 (12) 0.0712 (15) 0.0486 (13) −0.0025 (11) 0.0238 (10) −0.0022 (12)
N3 0.0427 (13) 0.0850 (18) 0.0492 (14) −0.0094 (12) 0.0262 (11) −0.0104 (13)
N4 0.0361 (12) 0.0736 (16) 0.0659 (15) 0.0040 (11) 0.0224 (11) 0.0138 (13)
N5 0.0546 (15) 0.0708 (17) 0.0600 (16) −0.0065 (13) 0.0190 (13) −0.0008 (13)
O1 0.0866 (19) 0.164 (3) 0.145 (3) 0.0323 (19) 0.0910 (19) 0.058 (2)
O2 0.096 (2) 0.148 (3) 0.0854 (18) 0.0435 (19) 0.0665 (17) 0.0204 (18)
O3 0.0672 (15) 0.135 (2) 0.0749 (16) −0.0336 (16) 0.0326 (13) −0.0304 (15)
S1 0.0582 (5) 0.0880 (6) 0.0615 (5) 0.0065 (4) 0.0383 (4) 0.0060 (4)
C25 0.119 (13) 0.152 (14) 0.117 (11) 0.027 (11) 0.077 (10) −0.002 (12)
C26 0.121 (11) 0.099 (11) 0.079 (8) 0.025 (8) 0.067 (8) −0.005 (7)
C25' 0.096 (5) 0.096 (6) 0.099 (4) −0.001 (4) 0.075 (4) −0.009 (4)
C26' 0.133 (11) 0.165 (11) 0.147 (12) −0.027 (9) 0.083 (10) −0.078 (9)

Geometric parameters (Å, º)

C1—C6 1.375 (4) C20—H20A 0.9700
C1—C2 1.383 (4) C20—H20B 0.9700
C1—C7 1.509 (4) C21—N4 1.308 (4)
C2—C3 1.375 (4) C21—N3 1.354 (3)
C2—H2 0.9300 C21—S1 1.716 (3)
C3—C4 1.364 (5) C22—C23 1.351 (5)
C3—H3 0.9300 C22—N4 1.358 (4)
C4—C5 1.364 (5) C22—C27 1.503 (5)
C4—H4 0.9300 C23—C24 1.445 (5)
C5—C6 1.383 (5) C23—S1 1.746 (3)
C5—H5 0.9300 C24—O1 1.208 (5)
C6—H6 0.9300 C24—O2 1.320 (5)
C7—N1 1.462 (3) C27—H27A 0.9600
C7—C17 1.542 (4) C27—H27B 0.9600
C7—H7 0.9800 C27—H27C 0.9600
C8—N1 1.464 (3) C28—N5 1.443 (4)
C8—C9 1.512 (4) C28—H28A 0.9600
C8—C15 1.551 (4) C28—H28B 0.9600
C8—H8 0.9800 C28—H28C 0.9600
C9—C10 1.382 (4) C29—N5 1.435 (4)
C9—C14 1.383 (4) C29—H29C 0.9600
C10—C11 1.381 (4) C29—H29A 0.9600
C10—H10 0.9300 C29—H29B 0.9600
C11—C12 1.357 (5) C30—O3 1.219 (4)
C11—H11 0.9300 C30—N5 1.308 (4)
C12—C13 1.361 (5) C30—H30 0.9300
C12—H12 0.9300 N1—H1A 0.844 (17)
C13—C14 1.392 (4) N2—N3 1.374 (3)
C13—H13 0.9300 N3—H3A 0.853 (17)
C14—H14 0.9300 O2—C25' 1.472 (6)
C15—C16 1.502 (4) O2—C25 1.559 (15)
C15—C20 1.536 (4) C25—C26 1.474 (16)
C15—H15 0.9800 C25—H25A 0.9700
C16—N2 1.277 (3) C25—H25B 0.9700
C16—C17 1.491 (4) C26—H26A 0.9600
C17—C18 1.536 (4) C26—H26B 0.9600
C17—H17 0.9800 C26—H26C 0.9600
C18—C19 1.517 (4) C25'—C26' 1.465 (11)
C18—H18A 0.9700 C25'—H25C 0.9700
C18—H18B 0.9700 C25'—H25D 0.9700
C19—C20 1.517 (4) C26'—H26D 0.9600
C19—H19A 0.9700 C26'—H26E 0.9600
C19—H19B 0.9700 C26'—H26F 0.9600
C6—C1—C2 117.7 (3) C19—C20—H20A 108.7
C6—C1—C7 123.0 (3) C15—C20—H20A 108.7
C2—C1—C7 119.3 (2) C19—C20—H20B 108.7
C3—C2—C1 121.6 (3) C15—C20—H20B 108.7
C3—C2—H2 119.2 H20A—C20—H20B 107.6
C1—C2—H2 119.2 N4—C21—N3 121.6 (3)
C4—C3—C2 119.8 (3) N4—C21—S1 116.3 (2)
C4—C3—H3 120.1 N3—C21—S1 122.1 (2)
C2—C3—H3 120.1 C23—C22—N4 115.4 (3)
C3—C4—C5 119.7 (3) C23—C22—C27 127.1 (3)
C3—C4—H4 120.1 N4—C22—C27 117.5 (3)
C5—C4—H4 120.1 C22—C23—C24 126.5 (3)
C4—C5—C6 120.6 (4) C22—C23—S1 110.6 (2)
C4—C5—H5 119.7 C24—C23—S1 122.9 (3)
C6—C5—H5 119.7 O1—C24—O2 123.1 (4)
C1—C6—C5 120.6 (3) O1—C24—C23 126.1 (5)
C1—C6—H6 119.7 O2—C24—C23 110.8 (4)
C5—C6—H6 119.7 C22—C27—H27A 109.5
N1—C7—C1 110.8 (2) C22—C27—H27B 109.5
N1—C7—C17 110.0 (2) H27A—C27—H27B 109.5
C1—C7—C17 112.9 (2) C22—C27—H27C 109.5
N1—C7—H7 107.6 H27A—C27—H27C 109.5
C1—C7—H7 107.6 H27B—C27—H27C 109.5
C17—C7—H7 107.6 N5—C28—H28A 109.5
N1—C8—C9 110.3 (2) N5—C28—H28B 109.5
N1—C8—C15 110.2 (2) H28A—C28—H28B 109.5
C9—C8—C15 113.0 (2) N5—C28—H28C 109.5
N1—C8—H8 107.7 H28A—C28—H28C 109.5
C9—C8—H8 107.7 H28B—C28—H28C 109.5
C15—C8—H8 107.7 N5—C29—H29C 109.5
C10—C9—C14 117.5 (3) N5—C29—H29A 109.5
C10—C9—C8 122.1 (2) H29C—C29—H29A 109.5
C14—C9—C8 120.4 (2) N5—C29—H29B 109.5
C11—C10—C9 121.3 (3) H29C—C29—H29B 109.5
C11—C10—H10 119.4 H29A—C29—H29B 109.5
C9—C10—H10 119.4 O3—C30—N5 124.9 (3)
C12—C11—C10 120.5 (3) O3—C30—H30 117.6
C12—C11—H11 119.8 N5—C30—H30 117.6
C10—C11—H11 119.8 C7—N1—C8 113.88 (19)
C11—C12—C13 119.6 (3) C7—N1—H1A 108.3 (19)
C11—C12—H12 120.2 C8—N1—H1A 107.3 (19)
C13—C12—H12 120.2 C16—N2—N3 117.5 (2)
C12—C13—C14 120.5 (3) C21—N3—N2 117.9 (2)
C12—C13—H13 119.7 C21—N3—H3A 114.5 (19)
C14—C13—H13 119.7 N2—N3—H3A 126.0 (19)
C9—C14—C13 120.6 (3) C21—N4—C22 110.3 (3)
C9—C14—H14 119.7 C30—N5—C29 121.0 (3)
C13—C14—H14 119.7 C30—N5—C28 120.9 (3)
C16—C15—C20 107.2 (2) C29—N5—C28 118.0 (3)
C16—C15—C8 106.8 (2) C24—O2—C25' 109.6 (4)
C20—C15—C8 116.4 (2) C24—O2—C25 134.6 (12)
C16—C15—H15 108.7 C21—S1—C23 87.38 (16)
C20—C15—H15 108.7 C26—C25—O2 110.1 (13)
C8—C15—H15 108.7 C26—C25—H25A 109.6
N2—C16—C17 118.8 (2) O2—C25—H25A 109.6
N2—C16—C15 129.5 (2) C26—C25—H25B 109.6
C17—C16—C15 111.7 (2) O2—C25—H25B 109.6
C16—C17—C18 107.2 (2) H25A—C25—H25B 108.1
C16—C17—C7 108.7 (2) C25—C26—H26A 109.5
C18—C17—C7 115.7 (2) C25—C26—H26B 109.5
C16—C17—H17 108.4 H26A—C26—H26B 109.5
C18—C17—H17 108.4 C25—C26—H26C 109.5
C7—C17—H17 108.4 H26A—C26—H26C 109.5
C19—C18—C17 114.0 (2) H26B—C26—H26C 109.5
C19—C18—H18A 108.8 C26'—C25'—O2 100.7 (9)
C17—C18—H18A 108.8 C26'—C25'—H25C 111.6
C19—C18—H18B 108.8 O2—C25'—H25C 111.6
C17—C18—H18B 108.8 C26'—C25'—H25D 111.6
H18A—C18—H18B 107.7 O2—C25'—H25D 111.6
C18—C19—C20 112.6 (2) H25C—C25'—H25D 109.4
C18—C19—H19A 109.1 C25'—C26'—H26D 109.5
C20—C19—H19A 109.1 C25'—C26'—H26E 109.5
C18—C19—H19B 109.1 H26D—C26'—H26E 109.5
C20—C19—H19B 109.1 C25'—C26'—H26F 109.5
H19A—C19—H19B 107.8 H26D—C26'—H26F 109.5
C19—C20—C15 114.3 (2) H26E—C26'—H26F 109.5
C6—C1—C2—C3 0.6 (5) C7—C17—C18—C19 66.9 (3)
C7—C1—C2—C3 −179.9 (3) C17—C18—C19—C20 45.7 (3)
C1—C2—C3—C4 −1.1 (5) C18—C19—C20—C15 −45.1 (3)
C2—C3—C4—C5 1.3 (6) C16—C15—C20—C19 53.1 (3)
C3—C4—C5—C6 −1.1 (6) C8—C15—C20—C19 −66.4 (3)
C2—C1—C6—C5 −0.4 (5) N4—C22—C23—C24 179.7 (3)
C7—C1—C6—C5 −179.9 (3) C27—C22—C23—C24 −1.6 (5)
C4—C5—C6—C1 0.7 (6) N4—C22—C23—S1 −0.4 (3)
C6—C1—C7—N1 22.4 (4) C27—C22—C23—S1 178.2 (3)
C2—C1—C7—N1 −157.1 (3) C22—C23—C24—O1 −8.7 (6)
C6—C1—C7—C17 −101.5 (3) S1—C23—C24—O1 171.5 (3)
C2—C1—C7—C17 79.0 (3) C22—C23—C24—O2 170.0 (3)
N1—C8—C9—C10 −39.0 (3) S1—C23—C24—O2 −9.8 (4)
C15—C8—C9—C10 84.8 (3) C1—C7—N1—C8 178.4 (2)
N1—C8—C9—C14 140.4 (3) C17—C7—N1—C8 −56.0 (3)
C15—C8—C9—C14 −95.8 (3) C9—C8—N1—C7 −176.8 (2)
C14—C9—C10—C11 −0.1 (4) C15—C8—N1—C7 57.7 (3)
C8—C9—C10—C11 179.3 (3) C17—C16—N2—N3 175.5 (2)
C9—C10—C11—C12 −0.5 (5) C15—C16—N2—N3 −2.0 (4)
C10—C11—C12—C13 0.9 (5) N4—C21—N3—N2 173.3 (2)
C11—C12—C13—C14 −0.7 (5) S1—C21—N3—N2 −8.0 (4)
C10—C9—C14—C13 0.4 (4) C16—N2—N3—C21 177.3 (3)
C8—C9—C14—C13 −179.1 (3) N3—C21—N4—C22 179.8 (3)
C12—C13—C14—C9 0.0 (5) S1—C21—N4—C22 1.0 (3)
N1—C8—C15—C16 −57.6 (3) C23—C22—N4—C21 −0.3 (4)
C9—C8—C15—C16 178.4 (2) C27—C22—N4—C21 −179.1 (3)
N1—C8—C15—C20 62.0 (3) O3—C30—N5—C29 0.1 (5)
C9—C8—C15—C20 −61.9 (3) O3—C30—N5—C28 −176.0 (4)
C20—C15—C16—N2 113.4 (3) O1—C24—O2—C25' 4.6 (6)
C8—C15—C16—N2 −121.2 (3) C23—C24—O2—C25' −174.1 (5)
C20—C15—C16—C17 −64.3 (3) O1—C24—O2—C25 −20.2 (15)
C8—C15—C16—C17 61.1 (3) C23—C24—O2—C25 161.0 (14)
N2—C16—C17—C18 −113.0 (3) N4—C21—S1—C23 −1.0 (2)
C15—C16—C17—C18 65.0 (3) N3—C21—S1—C23 −179.8 (3)
N2—C16—C17—C7 121.3 (3) C22—C23—S1—C21 0.8 (2)
C15—C16—C17—C7 −60.7 (3) C24—C23—S1—C21 −179.4 (3)
N1—C7—C17—C16 55.5 (3) C24—O2—C25—C26 128.4 (18)
C1—C7—C17—C16 179.9 (2) C25'—O2—C25—C26 81 (3)
N1—C7—C17—C18 −65.1 (3) C24—O2—C25'—C26' −174.6 (10)
C1—C7—C17—C18 59.3 (3) C25—O2—C25'—C26' −28.6 (14)
C16—C17—C18—C19 −54.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14···O1i 0.93 2.41 3.284 (4) 156
N1—H1A···O1ii 0.84 (2) 2.59 (2) 3.380 (4) 157 (2)
N3—H3A···O3 0.85 (2) 1.99 (2) 2.843 (4) 173 (3)

Symmetry codes: (i) −x−1, −y, −z+1; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5671).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Bondock, S., Khalifa, W. & Fadda, A. A. (2007). Eur. J. Med. Chem. 42, 948–954. [DOI] [PubMed]
  3. Bruker (1999). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Hutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Westwell, A. D. & Stevens, M. F. G. (2002). Eur. J. Med. Chem. 45, 744–747. [DOI] [PubMed]
  6. Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.
  7. Ramachandran, R., Rani, M. & Kabilan, S. (2009). Bioorg. Med. Chem. 19, 2819–2823. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, 1. DOI: 10.1107/S1600536813033540/lh5671sup1.cif

e-70-00o68-sup1.cif (37KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813033540/lh5671Isup2.hkl

e-70-00o68-Isup2.hkl (253.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536813033540/lh5671Isup3.cdx

Supporting information file. DOI: 10.1107/S1600536813033540/lh5671Isup4.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES