Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Dec 21;70(Pt 1):o75. doi: 10.1107/S1600536813033795

(1S*,2S*,4R*,5R*)-Cyclo­hexane-1,2,4,5-tetra­carb­oxy­lic acid

Akira Uchida a,*, Masatoshi Hasegawa b, Shinya Yamaguchi c, Eiichiro Takezawa c, Atsushi Ishikawa c, Takashi Kagayama c
PMCID: PMC3914102  PMID: 24527007

Abstract

The title compound, C10H12O8, a prospective raw material for colourless polyimides which are applied to electronic and microelectronic devices, lies about an inversion centre and the cyclo­hexane ring adopts a chair conformation. Two crystallographycally independent carb­oxy­lic acid groups on adjacent C atoms are in equatorial positions, resulting in a mutually trans conformation. In the crystal, O—H⋯O hydrogen bonds around an inversion centre and a threefold rotoinversion axis, respectively, form an inversion dimer with an R 2 2(8) motif and a trimer with an R 3 3(12) motif.

Related literature  

For background to polyimides, see: Ando et al. (2010); Hasegawa et al. (2007, 2013); Hasegawa & Horie (2001). For related structures, see: Uchida et al. (2003, 2012).graphic file with name e-70-00o75-scheme1.jpg

Experimental  

Crystal data  

  • C10H12O8

  • M r = 260.20

  • Trigonal, Inline graphic

  • a = 17.6970 (6) Å

  • c = 9.5455 (6) Å

  • V = 2589.0 (2) Å3

  • Z = 9

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 K

  • 0.33 × 0.26 × 0.26 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.891, T max = 0.966

  • 6439 measured reflections

  • 1653 independent reflections

  • 1388 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.119

  • S = 1.06

  • 1653 reflections

  • 90 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813033795/is5327sup1.cif

e-70-00o75-sup1.cif (199.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813033795/is5327Isup2.hkl

e-70-00o75-Isup2.hkl (91.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536813033795/is5327Isup3.mol

Supporting information file. DOI: 10.1107/S1600536813033795/is5327Isup4.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H4⋯O1i 0.81 (3) 1.93 (3) 2.705 (2) 160 (3)
O4—H5⋯O3ii 0.94 (3) 1.70 (3) 2.632 (1) 176 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

1. Comment

Aromatic polyimides (PI) are one of the most important heat-resistant polymeric materials in various electronic applications for their reliable combined properties: considerably high glass transition temperatures (Tg), non-flammability, and good dielectric and mechanical properties (Ando et al., 2010). However, intensive coloration of conventional PI films, which arises from charge-transfer (CT) interactions (Hasegawa & Horie, 2001), often disturbs their applications as optical materials. A recent strong demand is to replace inorganic glass substrates in flat panel displays (300–700 µm thick) by plastic substrates (< 100 µm thick), thereby the displays become drastically light and flexible. However, it is difficult to obtain the substrate materials simultaneously possessing excellent combined properties, i.e., optical transparency, heat resistance, dimensional stability against thermal cycles undergoing in the device fabrication process, flexibility, and processability. The most effective strategy for completely erasing the coloration is to inhibit the CT interactions by using non-aromatic (cycloaliphatic) monomers either in tetracarboxylic dianhydride or diamine components. For this purpose, we previously investigated the steric structures of hydrogenated pyromellitic dianhydride isomers, i.e., 1S,2R,4S,5R-cyclohexanetetracarboxylic dianhydride (H-PMDA) (Uchida et al., 2003) and 1R,2S,4S,5R-cyclohexanetetracarboxylic dianhydride (H"-PMDA) (Uchida et al., 2012). H"-PMDA showed much higher reactivity with diamines than H-PMDA and provided highly flexible colourless PI films with significantly improved solution-processability while keeping very high Tgs (Hasegawa et al., 2007, 2013). The results are based on a peculiar steric structure of H"-PMDA. Unfortunately, neither H-PMDA nor H"-PMDA led to PI films with low coefficients of thermal expansion (CTE) required for the excellent dimensional stability, probably owing to their non-linear/non-planar steric structures. An additional H-PMDA isomer, i.e., 1S,2S,4R,5R-cyclohexanetetracarboxylic dianhydride (H'-PMDA) can be expected to derive a novel low-CTE colourless PI system. The present work reports a crystal structure of a hydrolyzed compound of H'-PMDA.

2. Experimental

The title compound, (I), was synthesized as follows. Pyromellitic dianhydride was first hydrolyzed with a NaOH aqueous solution. The pyromellitic acid tetrasodium salt formed was hydrogenated in a high-pressure hydrogen atmosphere at 160 °C in the presence of a ruthenium catalyst. After hydrogenation was completed, the solution was additionally heated at a precisely controlled temperature for several hours, and cooled to room temperature. The solution was neutralized by slowly adding conc. HCl. The white precipitate formed was collected by filtration, recrystallized from water, and dried in vacuum at 80 °C for 5 h to obtain crystals of (I) suitable for X-ray analysis.

3. Refinement

All H atoms were observable in a difference Fourier map. H atoms on O atoms were refined freely [O—H = 0.81 (3) and 0.94 (3) Å]. Other H atoms were placed in calculated positions with C—H = 0.97–0.98 Å, and allowed to ride on their carrier atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level. H atoms are represented by circles of arbitrary size.

Fig. 2.

Fig. 2.

The packing of the title compound, viewed down the c axis,

Crystal data

C10H12O8 Dx = 1.502 Mg m3
Mr = 260.20 Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3 Cell parameters from 2340 reflections
a = 17.6970 (6) Å θ = 2.3–30.0°
c = 9.5455 (6) Å µ = 0.13 mm1
V = 2589.0 (2) Å3 T = 298 K
Z = 9 Block, colourless
F(000) = 1224 0.33 × 0.26 × 0.26 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 1388 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.019
φ and ω scans θmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −24→21
Tmin = 0.891, Tmax = 0.966 k = −20→24
6439 measured reflections l = −13→11
1653 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0607P)2 + 1.9122P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
1653 reflections Δρmax = 0.38 e Å3
90 parameters Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.51496 (8) 0.07671 (7) −0.08154 (11) 0.0279 (3)
H1A 0.4929 0.1116 −0.1242 0.034*
H1B 0.5770 0.1045 −0.1011 0.034*
C2 0.50063 (7) 0.07293 (7) 0.07787 (11) 0.0233 (2)
H2 0.4383 0.0484 0.0969 0.028*
C3 0.53165 (7) 0.01523 (7) 0.14585 (11) 0.0242 (2)
H3 0.5944 0.0414 0.1285 0.029*
C4 0.55013 (8) 0.16503 (7) 0.13456 (12) 0.0283 (3)
C5 0.51702 (8) 0.00882 (8) 0.30236 (12) 0.0267 (3)
O1 0.62253 (6) 0.19739 (7) 0.18327 (13) 0.0471 (3)
H4 0.5352 (17) 0.2558 (18) 0.151 (3) 0.083 (8)*
O2 0.50596 (8) 0.20615 (8) 0.12244 (15) 0.0543 (3)
O3 0.46919 (7) 0.03210 (7) 0.35746 (9) 0.0380 (3)
O4 0.55716 (7) −0.02417 (7) 0.37025 (10) 0.0400 (3)
H5 0.5485 (19) −0.0245 (19) 0.467 (3) 0.110 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0389 (6) 0.0247 (5) 0.0218 (5) 0.0171 (5) 0.0021 (4) 0.0033 (4)
C2 0.0259 (5) 0.0227 (5) 0.0214 (5) 0.0123 (4) 0.0009 (4) 0.0002 (4)
C3 0.0274 (5) 0.0268 (5) 0.0198 (5) 0.0147 (4) 0.0014 (4) 0.0015 (4)
C4 0.0309 (6) 0.0246 (5) 0.0267 (5) 0.0119 (5) 0.0041 (4) 0.0008 (4)
C5 0.0310 (6) 0.0282 (5) 0.0214 (5) 0.0153 (5) −0.0010 (4) 0.0009 (4)
O1 0.0302 (5) 0.0342 (5) 0.0672 (8) 0.0088 (4) −0.0056 (5) −0.0095 (5)
O2 0.0559 (7) 0.0333 (5) 0.0820 (9) 0.0285 (5) −0.0212 (6) −0.0187 (5)
O3 0.0517 (6) 0.0540 (6) 0.0237 (4) 0.0380 (5) 0.0042 (4) 0.0031 (4)
O4 0.0531 (6) 0.0611 (7) 0.0238 (4) 0.0420 (6) 0.0015 (4) 0.0059 (4)

Geometric parameters (Å, º)

C1—C3i 1.5370 (16) C3—H3 0.9800
C1—C2 1.5386 (15) C4—O1 1.2049 (16)
C1—H1A 0.9700 C4—O2 1.3126 (16)
C1—H1B 0.9700 C5—O3 1.2295 (15)
C2—C4 1.5130 (15) C5—O4 1.2961 (14)
C2—C3 1.5251 (15) O2—H4 0.81 (3)
C2—H2 0.9800 O4—H5 0.94 (3)
C3—C5 1.5108 (15)
C3i—C1—C2 111.06 (9) C5—C3—C1i 109.53 (9)
C3i—C1—H1A 109.4 C2—C3—C1i 110.89 (9)
C2—C1—H1A 109.4 C5—C3—H3 108.3
C3i—C1—H1B 109.4 C2—C3—H3 108.3
C2—C1—H1B 109.4 C1i—C3—H3 108.3
H1A—C1—H1B 108.0 O1—C4—O2 123.84 (12)
C4—C2—C3 111.15 (9) O1—C4—C2 123.74 (11)
C4—C2—C1 108.23 (9) O2—C4—C2 112.41 (11)
C3—C2—C1 110.07 (9) O3—C5—O4 124.14 (11)
C4—C2—H2 109.1 O3—C5—C3 121.25 (10)
C3—C2—H2 109.1 O4—C5—C3 114.60 (10)
C1—C2—H2 109.1 C4—O2—H4 109.5 (18)
C5—C3—C2 111.43 (9) C5—O4—H5 111.8 (17)
C3i—C1—C2—C4 178.45 (9) C1—C2—C4—O1 −95.39 (14)
C3i—C1—C2—C3 56.81 (13) C3—C2—C4—O2 −155.53 (11)
C4—C2—C3—C5 61.11 (12) C1—C2—C4—O2 83.49 (13)
C1—C2—C3—C5 −179.00 (9) C2—C3—C5—O3 14.47 (16)
C4—C2—C3—C1i −176.60 (9) C1i—C3—C5—O3 −108.61 (13)
C1—C2—C3—C1i −56.70 (13) C2—C3—C5—O4 −166.81 (10)
C3—C2—C4—O1 25.59 (16) C1i—C3—C5—O4 70.12 (13)

Symmetry code: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H4···O1ii 0.81 (3) 1.93 (3) 2.705 (2) 160 (3)
O4—H5···O3iii 0.94 (3) 1.70 (3) 2.632 (1) 176 (3)

Symmetry codes: (ii) −x+y+1, −x+1, z; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5327).

References

  1. Ando, S., Ueda, M., Kakimoto, M., Kochi, M., Takeichi, T., Hasegawa, M. & Yokota, R. (2010). In The Latest Polyimides: Fundamentals and Applications, 2nd ed. Tokyo: NTS.
  2. Bruker (2007). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  4. Hasegawa, M., Hirano, D., Fujii, M., Haga, M., Takezawa, E., Yamaguchi, S., Ishikawa, A. & Kagayama, T. (2013). J. Polym. Sci. Part A, 51, 575–592.
  5. Hasegawa, M. & Horie, K. (2001). Prog. Polym. Sci. 26, 259–335.
  6. Hasegawa, M., Horiuchi, M. & Wada, Y. (2007). High Perform. Polym. 19, 175–193.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Uchida, A., Hasegawa, M. & Manami, H. (2003). Acta Cryst. C59, o435–o438. [DOI] [PubMed]
  11. Uchida, A., Hasegawa, M., Takezawa, E., Yamaguchi, S., Ishikawa, A. & Kagayama, T. (2012). Acta Cryst. E68, o579. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813033795/is5327sup1.cif

e-70-00o75-sup1.cif (199.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813033795/is5327Isup2.hkl

e-70-00o75-Isup2.hkl (91.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536813033795/is5327Isup3.mol

Supporting information file. DOI: 10.1107/S1600536813033795/is5327Isup4.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES