Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Dec 24;70(Pt 1):o89–o90. doi: 10.1107/S1600536813033989

(E)-1-(2,4-Di­nitro­phen­yl)-2-(3-eth­oxy-4-hy­droxy­benzyl­idene)hydrazine

Hoong-Kun Fun a,*,, Suchada Chantrapromma b,§, Pumsak Ruanwas b, Thawanrat Kobkeatthawin b, C S Chidan Kumar a
PMCID: PMC3914112  PMID: 24527018

Abstract

The mol­ecule of the title hydrazine derivative, C15H14N4O6, is essentially planar, the dihedral angle between the substituted benzene rings being 2.25 (9)°. The eth­oxy and hy­droxy groups are almost coplanar with their bound benzene ring [r.m.s. deviation = 0.0153 (2) Å for the ten non-H atoms]. Intra­molecular N—H⋯O and O—H⋯Oeth­oxy hydrogen bonds generate S(6) and S(5) ring motifs, respectively. In the crystal, mol­ecules are linked by O—H⋯Onitro hydrogen bonds into chains propagating in [010]. Weak aromatic π–π inter­actions, with centroid–centroid distances of 3.8192 (19) and 4.0491 (19) Å, are also observed.

Related literature  

For a related structure and background to hydrazones, see: Fun et al. (2013). For other related structures, see: Fun et al. (2011, 2012). For the measurement of anti-oxidant activity, see: Molyneux (2004).graphic file with name e-70-00o89-scheme1.jpg

Experimental  

Crystal data  

  • C15H14N4O6

  • M r = 346.30

  • Monoclinic, Inline graphic

  • a = 10.245 (4) Å

  • b = 13.679 (5) Å

  • c = 14.184 (5) Å

  • β = 129.15 (2)°

  • V = 1541.5 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.52 × 0.37 × 0.07 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.941, T max = 0.992

  • 16113 measured reflections

  • 4060 independent reflections

  • 2183 reflections with I > 2σ(I)

  • R int = 0.036

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.131

  • S = 1.01

  • 4060 reflections

  • 235 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813033989/hb7175sup1.cif

e-70-00o89-sup1.cif (25.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813033989/hb7175Isup2.hkl

e-70-00o89-Isup2.hkl (199KB, hkl)

Supporting information file. DOI: 10.1107/S1600536813033989/hb7175Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H1O6⋯O2i 0.84 (3) 2.21 (3) 2.986 (2) 155 (3)
O6—H1O6⋯O5 0.84 (3) 2.19 (3) 2.663 (3) 116 (2)
N1—H1N1⋯O1 0.86 (2) 2.007 (18) 2.641 (2) 130.0 (18)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Prince of Songkla University for generous support. CSCK thanks the Universiti Sains Malaysia for a postdoctoral research fellowship. The authors extend their appreciation to the Malaysian Government and the Universiti Sains Malaysia for the APEX DE2012 grant No. 1002/PFIZIK/910323.

supplementary crystallographic information

1. Comment

As part of our on-going research on diaryl-hydrazones with potential bioactivity, the title compound (I) was synthesized in order to study and compare its antioxidant activity with the other related compounds (Fun et al., 2011; 2012; 2013). In our antioxidant activity evaluation of (I) by DPPH scavenging (Molyneux, 2004) it was found that (I) possesses strong antioxidant activity with 82.71% inhibition, comparison with L-ascorbic acid as a standard (90.39 % inhibition). Herein we report the synthesis and crystal structure of (I).

In Fig. 1, the molecular structure of (I), C15H14N4O6, is essentially planar with the dihedral angle between the two substituted benzene rings being 2.25 (9)°. The mean plane through the bridge fragment (N1/N2/C7) makes the dihedral angles of 2.25 (19) and 2.30 (19)° with the C1–C6 and C8–C13 rings, respectively. Both nitro groups of the 2,4-dinitrophenyl are slightly deviated with respect to their attached ring [torsion angles O1—N3—C2—C1 = -8.3 (2)°, O2—N3—C2—C3 = -9.4 (2)°, O3—N4—C4—C3 = -7.0 (2)° and O4—N4—C4—C5 = -7.2 (2)°]. The substituted ethoxy and hydroxy groups are co-planar with the bound benzene ring with the r.m.s. deviation of 0.0153 (2) Å for the ten non H atoms and the torsion angles C9—C10—O5—C14 = -3.1 (2)° and C15—C14—O5—C10 = -178.05 (14)°. Intramolecular N1—H1N1···O1 hydrogen bond (Fig. 1 and Table 1) generates an S(6) ring motif whereas another intramolecular O6—H1O6—O5 hydrogen bond generates S(5) ring motif. These intramolecular hydrogen bonds help to stabilize the planarity of the molecule. Bond distances in (I) are comparable with those observed in the closely related structure (Fun et al., 2013).

In the crystal (Fig. 2), the molecules are linked by intermolecular O6—H1O6···O2 hydrogen bond (Table 1) into chains along [010]. There are weak π–π interactions (Fig. 3) with the distances of Cg1···Cg2ii = 3.8192 (19) Å and Cg1···Cg2iii = 4.0491 (19) Å [symmetry codes (ii) = 2-x, -1/2+y, 1/2-z (iii) 2-x, -y, -z]; Cg1 and Cg2 are the centroids of C1–C6 and C8–C13 rings, respectively.

2. Experimental

2,4-dinitrophenylhydrazine (0.40 g, 2 mmol) was dissolved in ethanol (10 ml) and H2SO4 (conc.) (98 %, 0.50 ml) was added slowly with stirring. A solution of 3-ethoxy-4-hydroxybenzaldehyde (0.30 g, 2 mmol) in ethanol (20 ml) was then added to the solution with continuous stirring for 1 hr, yielding an orange solid which was filtered off and washed with methanol. Orange plates of (I) were recrystallized from acetone solution by slow evaporation of the solvent at room temperature over a few weeks, Mp. 515-516 K.

3. Refinement

Hydrazine and hydroxy H atoms were located from a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for CH and aromatic, and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 40% probability displacement ellipsoids. Intramolecular N—H···O and O—H···O hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

The crystal packing of (I) viewed along the c axis. Hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

π-π interactions between aromatic rings. H-atoms are omitted for clarify.

Crystal data

C15H14N4O6 F(000) = 720
Mr = 346.30 Dx = 1.492 Mg m3
Monoclinic, P21/c Melting point = 515–516 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 10.245 (4) Å Cell parameters from 4060 reflections
b = 13.679 (5) Å θ = 2.4–29.0°
c = 14.184 (5) Å µ = 0.12 mm1
β = 129.15 (2)° T = 298 K
V = 1541.5 (11) Å3 Plate, orange
Z = 4 0.52 × 0.37 × 0.07 mm

Data collection

Bruker APEXII CCD diffractometer 4060 independent reflections
Radiation source: sealed tube 2183 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.036
φ and ω scans θmax = 29.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −13→13
Tmin = 0.941, Tmax = 0.992 k = −18→18
16113 measured reflections l = −13→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.0702P] where P = (Fo2 + 2Fc2)/3
4060 reflections (Δ/σ)max = 0.001
235 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.20079 (13) −0.22891 (8) 0.16025 (12) 0.0622 (4)
O2 1.05019 (14) −0.35272 (9) 0.13142 (13) 0.0736 (5)
O3 0.46877 (15) −0.32518 (12) −0.07366 (14) 0.0814 (5)
O4 0.36011 (15) −0.18505 (11) −0.08629 (13) 0.0767 (4)
O5 1.01832 (12) 0.42468 (8) 0.13492 (11) 0.0532 (3)
O6 1.32309 (16) 0.49799 (9) 0.24070 (13) 0.0580 (4)
H1O6 1.230 (3) 0.5246 (19) 0.209 (2) 0.121 (10)*
N1 1.09605 (18) −0.05017 (10) 0.15152 (14) 0.0489 (4)
H1N1 1.183 (2) −0.0854 (13) 0.1800 (17) 0.065 (6)*
N2 1.10133 (17) 0.05030 (9) 0.15757 (13) 0.0472 (4)
N3 1.06865 (16) −0.26439 (10) 0.13050 (13) 0.0494 (4)
N4 0.47883 (17) −0.23628 (13) −0.05806 (14) 0.0594 (4)
C1 0.94828 (19) −0.09698 (11) 0.10069 (14) 0.0411 (4)
C2 0.93039 (18) −0.19991 (11) 0.09135 (14) 0.0409 (4)
C3 0.77777 (19) −0.24509 (12) 0.04025 (14) 0.0452 (4)
H3A 0.7692 −0.3129 0.0357 0.054*
C4 0.63954 (19) −0.18842 (12) −0.00355 (15) 0.0463 (4)
C5 0.6511 (2) −0.08732 (13) 0.00279 (16) 0.0523 (5)
H5A 0.5558 −0.0499 −0.0284 0.063*
C6 0.8015 (2) −0.04225 (12) 0.05462 (16) 0.0509 (4)
H6A 0.8077 0.0256 0.0598 0.061*
C7 1.2451 (2) 0.08997 (12) 0.20969 (15) 0.0474 (4)
H7A 1.3388 0.0507 0.2419 0.057*
C8 1.26408 (19) 0.19596 (11) 0.21919 (14) 0.0432 (4)
C9 1.12420 (19) 0.25734 (11) 0.17161 (15) 0.0437 (4)
H9A 1.0192 0.2301 0.1360 0.052*
C10 1.14273 (18) 0.35742 (11) 0.17773 (15) 0.0432 (4)
C11 1.30253 (19) 0.39867 (12) 0.23335 (15) 0.0448 (4)
C12 1.43888 (19) 0.33878 (12) 0.28036 (16) 0.0510 (5)
H12A 1.5442 0.3661 0.3172 0.061*
C13 1.42040 (19) 0.23804 (12) 0.27326 (15) 0.0485 (4)
H13A 1.5134 0.1982 0.3049 0.058*
C14 0.84992 (18) 0.38972 (12) 0.07237 (16) 0.0509 (4)
H14A 0.8445 0.3497 0.1263 0.061*
H14B 0.8145 0.3504 0.0029 0.061*
C15 0.7378 (2) 0.47736 (13) 0.03131 (17) 0.0573 (5)
H15A 0.6249 0.4563 −0.0071 0.086*
H15B 0.7392 0.5143 −0.0256 0.086*
H15C 0.7775 0.5175 0.1003 0.086*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0395 (7) 0.0560 (8) 0.0861 (10) 0.0018 (5) 0.0373 (7) −0.0034 (7)
O2 0.0515 (8) 0.0417 (8) 0.1069 (12) 0.0051 (6) 0.0401 (8) 0.0016 (7)
O3 0.0537 (8) 0.0706 (10) 0.1065 (12) −0.0078 (7) 0.0442 (9) 0.0088 (9)
O4 0.0417 (7) 0.0993 (11) 0.0876 (11) 0.0102 (7) 0.0400 (8) 0.0084 (8)
O5 0.0389 (6) 0.0431 (6) 0.0697 (8) −0.0035 (5) 0.0305 (6) −0.0059 (6)
O6 0.0490 (7) 0.0453 (7) 0.0754 (9) −0.0079 (6) 0.0373 (7) −0.0069 (6)
N1 0.0437 (8) 0.0400 (8) 0.0605 (10) 0.0040 (6) 0.0317 (8) 0.0026 (7)
N2 0.0511 (8) 0.0400 (8) 0.0540 (9) 0.0007 (6) 0.0349 (8) 0.0014 (6)
N3 0.0402 (8) 0.0443 (9) 0.0555 (9) 0.0026 (6) 0.0264 (7) −0.0023 (7)
N4 0.0415 (8) 0.0740 (11) 0.0609 (10) 0.0004 (8) 0.0314 (8) 0.0091 (9)
C1 0.0416 (9) 0.0437 (9) 0.0409 (9) 0.0031 (7) 0.0273 (8) 0.0016 (7)
C2 0.0359 (8) 0.0435 (9) 0.0430 (9) 0.0053 (7) 0.0248 (8) 0.0021 (7)
C3 0.0439 (9) 0.0476 (9) 0.0433 (10) 0.0018 (7) 0.0272 (8) 0.0024 (8)
C4 0.0373 (8) 0.0572 (11) 0.0457 (10) 0.0029 (7) 0.0269 (8) 0.0042 (8)
C5 0.0443 (10) 0.0602 (12) 0.0538 (11) 0.0141 (8) 0.0316 (9) 0.0064 (9)
C6 0.0512 (10) 0.0449 (10) 0.0597 (12) 0.0094 (8) 0.0364 (10) 0.0022 (8)
C7 0.0459 (9) 0.0479 (10) 0.0477 (10) 0.0039 (7) 0.0292 (9) 0.0029 (8)
C8 0.0438 (9) 0.0453 (10) 0.0411 (9) −0.0005 (7) 0.0271 (8) 0.0018 (7)
C9 0.0369 (8) 0.0462 (10) 0.0449 (10) −0.0053 (7) 0.0243 (8) −0.0035 (8)
C10 0.0388 (8) 0.0470 (10) 0.0432 (10) 0.0001 (7) 0.0257 (8) −0.0017 (8)
C11 0.0434 (9) 0.0459 (10) 0.0454 (10) −0.0060 (7) 0.0282 (8) −0.0048 (8)
C12 0.0386 (9) 0.0563 (11) 0.0564 (12) −0.0071 (8) 0.0292 (9) −0.0023 (9)
C13 0.0378 (9) 0.0538 (10) 0.0511 (11) 0.0038 (7) 0.0268 (8) 0.0042 (8)
C14 0.0371 (9) 0.0534 (10) 0.0586 (11) −0.0046 (7) 0.0285 (9) −0.0071 (9)
C15 0.0494 (10) 0.0560 (11) 0.0656 (13) 0.0055 (8) 0.0359 (10) 0.0026 (9)

Geometric parameters (Å, º)

O1—N3 1.2349 (16) C5—C6 1.366 (2)
O2—N3 1.2243 (17) C5—H5A 0.9300
O3—N4 1.229 (2) C6—H6A 0.9300
O4—N4 1.2312 (18) C7—C8 1.458 (2)
O5—C10 1.3647 (18) C7—H7A 0.9300
O5—C14 1.4351 (18) C8—C13 1.390 (2)
O6—C11 1.369 (2) C8—C9 1.412 (2)
O6—H1O6 0.84 (3) C9—C10 1.377 (2)
N1—C1 1.358 (2) C9—H9A 0.9300
N1—N2 1.3759 (18) C10—C11 1.411 (2)
N1—H1N1 0.858 (17) C11—C12 1.375 (2)
N2—C7 1.279 (2) C12—C13 1.386 (2)
N3—C2 1.4490 (19) C12—H12A 0.9300
N4—C4 1.459 (2) C13—H13A 0.9300
C1—C2 1.415 (2) C14—C15 1.500 (2)
C1—C6 1.417 (2) C14—H14A 0.9700
C2—C3 1.386 (2) C14—H14B 0.9700
C3—C4 1.372 (2) C15—H15A 0.9600
C3—H3A 0.9300 C15—H15B 0.9600
C4—C5 1.386 (2) C15—H15C 0.9600
C10—O5—C14 118.10 (12) C8—C7—H7A 119.6
C11—O6—H1O6 108.7 (18) C13—C8—C9 119.05 (15)
C1—N1—N2 119.40 (13) C13—C8—C7 120.17 (15)
C1—N1—H1N1 117.7 (12) C9—C8—C7 120.77 (14)
N2—N1—H1N1 122.9 (12) C10—C9—C8 120.21 (14)
C7—N2—N1 116.45 (14) C10—C9—H9A 119.9
O2—N3—O1 121.84 (13) C8—C9—H9A 119.9
O2—N3—C2 118.99 (13) O5—C10—C9 126.10 (14)
O1—N3—C2 119.17 (14) O5—C10—C11 114.04 (14)
O3—N4—O4 123.46 (15) C9—C10—C11 119.86 (14)
O3—N4—C4 118.54 (14) O6—C11—C12 119.61 (14)
O4—N4—C4 118.00 (17) O6—C11—C10 120.53 (14)
N1—C1—C2 123.64 (14) C12—C11—C10 119.86 (15)
N1—C1—C6 119.91 (15) C11—C12—C13 120.44 (15)
C2—C1—C6 116.45 (14) C11—C12—H12A 119.8
C3—C2—C1 121.96 (14) C13—C12—H12A 119.8
C3—C2—N3 115.85 (14) C12—C13—C8 120.57 (15)
C1—C2—N3 122.15 (13) C12—C13—H13A 119.7
C4—C3—C2 119.08 (16) C8—C13—H13A 119.7
C4—C3—H3A 120.5 O5—C14—C15 107.50 (14)
C2—C3—H3A 120.5 O5—C14—H14A 110.2
C3—C4—C5 120.88 (15) C15—C14—H14A 110.2
C3—C4—N4 118.90 (16) O5—C14—H14B 110.2
C5—C4—N4 120.22 (14) C15—C14—H14B 110.2
C6—C5—C4 120.41 (15) H14A—C14—H14B 108.5
C6—C5—H5A 119.8 C14—C15—H15A 109.5
C4—C5—H5A 119.8 C14—C15—H15B 109.5
C5—C6—C1 121.21 (16) H15A—C15—H15B 109.5
C5—C6—H6A 119.4 C14—C15—H15C 109.5
C1—C6—H6A 119.4 H15A—C15—H15C 109.5
N2—C7—C8 120.86 (15) H15B—C15—H15C 109.5
N2—C7—H7A 119.6
C1—N1—N2—C7 177.98 (15) N1—C1—C6—C5 179.86 (16)
N2—N1—C1—C2 −179.34 (15) C2—C1—C6—C5 −0.8 (2)
N2—N1—C1—C6 0.0 (2) N1—N2—C7—C8 178.99 (14)
N1—C1—C2—C3 179.14 (16) N2—C7—C8—C13 −178.30 (15)
C6—C1—C2—C3 −0.2 (2) N2—C7—C8—C9 0.3 (2)
N1—C1—C2—N3 −3.1 (3) C13—C8—C9—C10 0.7 (2)
C6—C1—C2—N3 177.54 (15) C7—C8—C9—C10 −177.94 (16)
O2—N3—C2—C3 −9.4 (2) C14—O5—C10—C9 −3.1 (2)
O1—N3—C2—C3 169.55 (15) C14—O5—C10—C11 177.49 (14)
O2—N3—C2—C1 172.77 (16) C8—C9—C10—O5 179.66 (15)
O1—N3—C2—C1 −8.3 (2) C8—C9—C10—C11 −0.9 (2)
C1—C2—C3—C4 0.6 (2) O5—C10—C11—O6 −0.2 (2)
N3—C2—C3—C4 −177.29 (15) C9—C10—C11—O6 −179.65 (15)
C2—C3—C4—C5 0.0 (2) O5—C10—C11—C12 179.98 (15)
C2—C3—C4—N4 179.57 (15) C9—C10—C11—C12 0.5 (3)
O3—N4—C4—C3 −7.0 (2) O6—C11—C12—C13 −179.69 (16)
O4—N4—C4—C3 173.20 (15) C10—C11—C12—C13 0.1 (3)
O3—N4—C4—C5 172.60 (17) C11—C12—C13—C8 −0.4 (3)
O4—N4—C4—C5 −7.2 (2) C9—C8—C13—C12 −0.1 (2)
C3—C4—C5—C6 −1.0 (3) C7—C8—C13—C12 178.60 (16)
N4—C4—C5—C6 179.47 (16) C10—O5—C14—C15 −178.05 (14)
C4—C5—C6—C1 1.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O6—H1O6···O2i 0.84 (3) 2.21 (3) 2.986 (2) 155 (3)
O6—H1O6···O5 0.84 (3) 2.19 (3) 2.663 (3) 116 (2)
N1—H1N1···O1 0.86 (2) 2.007 (18) 2.641 (2) 130.0 (18)

Symmetry code: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7175).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Fun, H.-K., Chantrapromma, S., Nilwanna, B. & Kobkeatthawin, T. (2012). Acta Cryst. E68, o2144–o2145. [DOI] [PMC free article] [PubMed]
  3. Fun, H.-K., Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T. & Boonnak, N. (2013). Acta Cryst. E69, o1203–o1204. [DOI] [PMC free article] [PubMed]
  4. Fun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o3202–o3203. [DOI] [PMC free article] [PubMed]
  5. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  6. Molyneux, P. (2004). Songklanakarin J. Sci. Technol 26, 211–219.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813033989/hb7175sup1.cif

e-70-00o89-sup1.cif (25.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813033989/hb7175Isup2.hkl

e-70-00o89-Isup2.hkl (199KB, hkl)

Supporting information file. DOI: 10.1107/S1600536813033989/hb7175Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES