Abstract
We have examined the effect of the trophic protein, nerve growth factor (NGF), on organotypic cultures of fetal rat striatum. Treatment of cultures with NGF for 10-11 days resulted in a 5- to 12-fold increase in the specific activity of the cholinergic enzyme choline acetyltransferase (CAT; EC 2.3.1.6). in a dose-dependent fashion. This effect was not elicited by insulin, ferritin, or cytochrome c, proteins similar in structure or physicochemical properties to NGF. The effect of NGF on CAT activity was specifically blocked by anti-NGF antiserum, whereas treatment with the antiserum alone did not have a significant effect on the enzyme. Immunocytochemical studies of the treated cultures, using a monoclonal antibody directed against CAT, revealed positively stained neurons exhibiting dendritic and axonal processes. NGF did not have an effect on total protein content of the striatal cultures, suggesting a highly specific effect. Moreover, levels of substance P, a peptide localized to other, noncholinergic neurons, were not altered by NGF. Substance P remained unchanged after treatment with NGF for 12 days, whereas CAT activity increased 12-fold in sister cultures. Although the mechanisms of action of NGF on striatal cholinergic interneurons remain to be determined, the marked, specific response of CAT suggests that this well-defined trophic protein may play a critical role in normal brain development.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adler J. E., Kessler J. A., Black I. B. Development and regulation of substance P in sensory neurons in vitro. Dev Biol. 1984 Apr;102(2):417–425. doi: 10.1016/0012-1606(84)90206-9. [DOI] [PubMed] [Google Scholar]
- BONTING S. L., JONES M. Determination of microgram quantities of deoxyribonucleic acid and protein in tissues grown in vitro. Arch Biochem Biophys. 1957 Feb;66(2):340–353. doi: 10.1016/s0003-9861(57)80009-5. [DOI] [PubMed] [Google Scholar]
- Brownstein M. J., Mroz E. A., Tappaz M. L., Leeman S. E. On the origin of substance P and glutamic acid decarboxylase (GAD) in the substantia nigra. Brain Res. 1977 Oct 28;135(2):315–323. doi: 10.1016/0006-8993(77)91034-4. [DOI] [PubMed] [Google Scholar]
- Coyle J. T., Price D. L., DeLong M. R. Alzheimer's disease: a disorder of cortical cholinergic innervation. Science. 1983 Mar 11;219(4589):1184–1190. doi: 10.1126/science.6338589. [DOI] [PubMed] [Google Scholar]
- Crawford G. D., Correa L., Salvaterra P. M. Interaction of monoclonal antibodies with mammalian choline acetyltransferase. Proc Natl Acad Sci U S A. 1982 Nov;79(22):7031–7035. doi: 10.1073/pnas.79.22.7031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dreyfus C. F., Gershon M. D., Crain S. M. Innervation of hippocampal explants by central catecholaminergic neurons in co-cultured fetal mouse brain stem explants. Brain Res. 1979 Feb 9;161(3):431–445. doi: 10.1016/0006-8993(79)90673-5. [DOI] [PubMed] [Google Scholar]
- Dreyfus C. F., Peterson E. R., Crain S. M. Failure of nerve growth factor to affect fetal mouse brain stem catecholaminergic neurons in culture. Brain Res. 1980 Aug 4;194(2):540–547. doi: 10.1016/0006-8993(80)91239-1. [DOI] [PubMed] [Google Scholar]
- Fonnum F. A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem. 1975 Feb;24(2):407–409. doi: 10.1111/j.1471-4159.1975.tb11895.x. [DOI] [PubMed] [Google Scholar]
- Frazier W. A., Boyd L. F., Pulliam M. W., Szutowicz A., Bradshaw R. A. Properties and specificity of binding sites for 125I-nerve growth factor in embryonic heart and brain. J Biol Chem. 1974 Sep 25;249(18):5918–5923. [PubMed] [Google Scholar]
- Gnahn H., Hefti F., Heumann R., Schwab M. E., Thoenen H. NGF-mediated increase of choline acetyltransferase (ChAT) in the neonatal rat forebrain: evidence for a physiological role of NGF in the brain? Brain Res. 1983 Jul;285(1):45–52. doi: 10.1016/0165-3806(83)90107-4. [DOI] [PubMed] [Google Scholar]
- Greene L. A., Shooter E. M. The nerve growth factor: biochemistry, synthesis, and mechanism of action. Annu Rev Neurosci. 1980;3:353–402. doi: 10.1146/annurev.ne.03.030180.002033. [DOI] [PubMed] [Google Scholar]
- Gundersen R. W., Barrett J. N. Neuronal chemotaxis: chick dorsal-root axons turn toward high concentrations of nerve growth factor. Science. 1979 Nov 30;206(4422):1079–1080. doi: 10.1126/science.493992. [DOI] [PubMed] [Google Scholar]
- Gusella J. F., Wexler N. S., Conneally P. M., Naylor S. L., Anderson M. A., Tanzi R. E., Watkins P. C., Ottina K., Wallace M. R., Sakaguchi A. Y. A polymorphic DNA marker genetically linked to Huntington's disease. Nature. 1983 Nov 17;306(5940):234–238. doi: 10.1038/306234a0. [DOI] [PubMed] [Google Scholar]
- Hattori T., Singh V. K., McGeer E. G., McGeer P. L. Immunohistochemical localization of choline acetyltransferase containing neostriatal neurons and their relationship with dopaminergic synapses. Brain Res. 1976 Jan 30;102(1):164–173. doi: 10.1016/0006-8993(76)90583-7. [DOI] [PubMed] [Google Scholar]
- Hefti F., Dravid A., Hartikka J. Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septo-hippocampal lesions. Brain Res. 1984 Feb 20;293(2):305–311. doi: 10.1016/0006-8993(84)91237-x. [DOI] [PubMed] [Google Scholar]
- Hefti F., Hartikka J., Eckenstein F., Gnahn H., Heumann R., Schwab M. Nerve growth factor increases choline acetyltransferase but not survival or fiber outgrowth of cultured fetal septal cholinergic neurons. Neuroscience. 1985 Jan;14(1):55–68. doi: 10.1016/0306-4522(85)90163-0. [DOI] [PubMed] [Google Scholar]
- Honegger P., Lenoir D. Nerve growth factor (NGF) stimulation of cholinergic telencephalic neurons in aggregating cell cultures. Brain Res. 1982 Feb;255(2):229–238. doi: 10.1016/0165-3806(82)90023-2. [DOI] [PubMed] [Google Scholar]
- Houser C. R., Crawford G. D., Barber R. P., Salvaterra P. M., Vaughn J. E. Organization and morphological characteristics of cholinergic neurons: an immunocytochemical study with a monoclonal antibody to choline acetyltransferase. Brain Res. 1983 Apr 25;266(1):97–119. doi: 10.1016/0006-8993(83)91312-4. [DOI] [PubMed] [Google Scholar]
- Kessler J. A., Black I. B. Nerve growth factor stimulates the development of substance P in sensory ganglia. Proc Natl Acad Sci U S A. 1980 Jan;77(1):649–652. doi: 10.1073/pnas.77.1.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kessler J. A., Black I. B. Similarities in development of substance P and somatostatin in peripheral sensory neurons: effects of capsaicin and nerve growth factor. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4644–4647. doi: 10.1073/pnas.78.7.4644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konkol R. J., Mailman R. B., Bendeich E. G., Garrison A. M., Mueller R. A., Breese G. R. Evaluation of the effects of nerve growth factor and anti-nerve growth factor on the development of central catecholamine-containing neurons. Brain Res. 1978 Apr 14;144(2):277–285. doi: 10.1016/0006-8993(78)90154-3. [DOI] [PubMed] [Google Scholar]
- Levi-Montalcini R., Angeletti P. U. Nerve growth factor. Physiol Rev. 1968 Jul;48(3):534–569. doi: 10.1152/physrev.1968.48.3.534. [DOI] [PubMed] [Google Scholar]
- Levi-Montalcini R. Developmental neurobiology and the natural history of nerve growth factor. Annu Rev Neurosci. 1982;5:341–362. doi: 10.1146/annurev.ne.05.030182.002013. [DOI] [PubMed] [Google Scholar]
- McGeer P. L., McGeer E. G., Fibiger H. C., Wickson V. Neostriatal choline acetylase and cholinesterase following selective brain lesions. Brain Res. 1971 Dec 10;35(1):308–314. doi: 10.1016/0006-8993(71)90625-1. [DOI] [PubMed] [Google Scholar]
- Ordronneau P., Lindström P. B., Petrusz P. Four unlabeled antibody bridge techniques: a comparison. J Histochem Cytochem. 1981 Dec;29(12):1397–1404. doi: 10.1177/29.12.7033366. [DOI] [PubMed] [Google Scholar]
- Powell D., Leeman S., Tregear G. W., Niall H. D., Potts J. T., Jr Radioimmunoassay for substance P. Nat New Biol. 1973 Feb 21;241(112):252–254. doi: 10.1038/newbio241252a0. [DOI] [PubMed] [Google Scholar]
- Schwab M. E., Otten U., Agid Y., Thoenen H. Nerve growth factor (NGF) in the rat CNS: absence of specific retrograde axonal transport and tyrosine hydroxylase induction in locus coeruleus and substantia nigra. Brain Res. 1979 Jun 8;168(3):473–483. doi: 10.1016/0006-8993(79)90303-2. [DOI] [PubMed] [Google Scholar]
- Seiler M., Schwab M. E. Specific retrograde transport of nerve growth factor (NGF) from neocortex to nucleus basalis in the rat. Brain Res. 1984 May 21;300(1):33–39. doi: 10.1016/0006-8993(84)91338-6. [DOI] [PubMed] [Google Scholar]
- Shelton D. L., Reichardt L. F. Expression of the beta-nerve growth factor gene correlates with the density of sympathetic innervation in effector organs. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7951–7955. doi: 10.1073/pnas.81.24.7951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thoenen H., Angeletti P. U., Levi-Montalcini R., Kettler R. Selective induction by nerve growth factor of tyrosine hydroxylase and dopamine- -hydroxylase in the rat superior cervical ganglia. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1598–1602. doi: 10.1073/pnas.68.7.1598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thoenen H., Barde Y. A. Physiology of nerve growth factor. Physiol Rev. 1980 Oct;60(4):1284–1335. doi: 10.1152/physrev.1980.60.4.1284. [DOI] [PubMed] [Google Scholar]
- Varon S. Nerve growth factor and its mode of action. Exp Neurol. 1975 Sep;48(3 Pt 2):75–92. doi: 10.1016/0014-4886(75)90172-7. [DOI] [PubMed] [Google Scholar]
- White H. L., Wu J. C. Choline and carnitine acetyltransferases of heart. Biochemistry. 1973 Feb 27;12(5):841–846. doi: 10.1021/bi00729a009. [DOI] [PubMed] [Google Scholar]