Abstract
Corticotropin (ACTH)-releasing factor, vasoactive intestinal peptide, and catecholamines--hormones that stimulate ACTH secretion and cAMP generation--increased cytosolic calcium in AtT-20 cells. The increase in intracellular calcium is presumably a consequence of the stimulated cAMP synthesis, since forskolin, an activator of the catalytic unit of adenylate cyclase, and the cAMP analog 8-bromoadenosine 3',5'-cyclic monophosphate (8Br-cAMP) also increased the cytosolic levels of this ion. Pretreatment with somatostatin, a neuropeptide that inhibits stimulation of the adenylate cyclase system and the secretion of ACTH blocked the increase of cytosolic calcium. The effect of 8Br-cAMP, which bypasses the cyclase, was not inhibited by somatostatin pretreatment. The source of the increased calcium appears to be mainly extracellular. This is indicated by the inability of the secretagogues to increase cytosolic calcium in a medium deprived of this ion or in the presence of blockers of voltage-gated calcium channels. The involvement of calcium channels in the calcium rise evoked by the secretagogues was supported by experiments using the whole-cell patch-clamp technique. In these experiments 8Br-cAMP increased voltage-dependent calcium currents. These results suggest the following chain of events in the receptor-mediated elevation of cytosolic calcium and the concomitant release of ACTH from AtT-20 cells: hormone-receptor binding----cAMP synthesis----protein kinase activation----calcium channel activation----increase in cytosolic calcium----many steps----ACTH release. Phorbol myristate acetate, a compound which does not stimulate cAMP generation but enhances the release of ACTH in AtT-20 cells, decreased the cytosolic calcium level.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adler M., Wong B. S., Sabol S. L., Busis N., Jackson M. B., Weight F. F. Action potentials and membrane ion channels in clonal anterior pituitary cells. Proc Natl Acad Sci U S A. 1983 Apr;80(7):2086–2090. doi: 10.1073/pnas.80.7.2086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arslan P., Di Virgilio F., Beltrame M., Tsien R. Y., Pozzan T. Cytosolic Ca2+ homeostasis in Ehrlich and Yoshida carcinomas. A new, membrane-permeant chelator of heavy metals reveals that these ascites tumor cell lines have normal cytosolic free Ca2+. J Biol Chem. 1985 Mar 10;260(5):2719–2727. [PubMed] [Google Scholar]
- Axelrod J., Reisine T. D. Stress hormones: their interaction and regulation. Science. 1984 May 4;224(4648):452–459. doi: 10.1126/science.6143403. [DOI] [PubMed] [Google Scholar]
- Curtis B. M., Catterall W. A. Phosphorylation of the calcium antagonist receptor of the voltage-sensitive calcium channel by cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2528–2532. doi: 10.1073/pnas.82.8.2528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol. 1983 Jul;245(1):C1–14. doi: 10.1152/ajpcell.1983.245.1.C1. [DOI] [PubMed] [Google Scholar]
- Giguere V., Lefevre G., Labrie F. Site of calcium requirement for stimulation of ACTH release in rat anterior pituitary cells in culture by synthetic ovine corticotropin-releasing factor. Life Sci. 1982 Dec 27;31(26):3057–3062. doi: 10.1016/0024-3205(82)90075-3. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Heisler S. 12-O-tetradecanoyl-phorbol-13-acetate-induced ACTH secretion in pituitary tumor cells. Eur J Pharmacol. 1984 Feb 17;98(2):177–183. doi: 10.1016/0014-2999(84)90588-0. [DOI] [PubMed] [Google Scholar]
- Heisler S., Reisine T. Forskolin stimulates adenylate cyclase activity, cyclic AMP accumulation, and adrenocorticotropin secretion from mouse anterior pituitary tumor cells. J Neurochem. 1984 Jun;42(6):1659–1666. doi: 10.1111/j.1471-4159.1984.tb12757.x. [DOI] [PubMed] [Google Scholar]
- Henquin J. C., Meissner H. P. The ionic, electrical, and secretory effects of endogenous cyclic adenosine monophosphate in mouse pancreatic B cells: studies with forskolin. Endocrinology. 1984 Sep;115(3):1125–1134. doi: 10.1210/endo-115-3-1125. [DOI] [PubMed] [Google Scholar]
- Hook V. Y., Heisler S., Sabol S. L., Axelrod J. Corticotropin releasing factor stimulates adrenocorticotropin and beta-endorphin release from AtT-20 mouse pituitary tumor cells. Biochem Biophys Res Commun. 1982 Jun 30;106(4):1364–1371. doi: 10.1016/0006-291x(82)91264-5. [DOI] [PubMed] [Google Scholar]
- Kraft A. S., Anderson W. B., Cooper H. L., Sando J. J. Decrease in cytosolic calcium/phospholipid-dependent protein kinase activity following phorbol ester treatment of EL4 thymoma cells. J Biol Chem. 1982 Nov 25;257(22):13193–13196. [PubMed] [Google Scholar]
- Kraft A. S., Anderson W. B. Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane. Nature. 1983 Feb 17;301(5901):621–623. doi: 10.1038/301621a0. [DOI] [PubMed] [Google Scholar]
- Labrie F., Veilleux R., Lefevre G., Coy D. H., Sueiras-Diaz J., Schally A. V. Corticotropin-releasing factor stimulates accumulation of adenosine 3', 5'-monophosphate in rat pituitary corticotrophs. Science. 1982 May 28;216(4549):1007–1008. doi: 10.1126/science.6281886. [DOI] [PubMed] [Google Scholar]
- Luini A. G., Axelrod J. Inhibitors of the cytochrome P-450 enzymes block the secretagogue-induced release of corticotropin in mouse pituitary tumor cells. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1012–1014. doi: 10.1073/pnas.82.4.1012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macphee C. H., Drummond A. H. Thyrotropin-releasing hormone stimulates rapid breakdown of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-phosphate in GH3 pituitary tumor cells. Mol Pharmacol. 1984 Mar;25(2):193–200. [PubMed] [Google Scholar]
- Montague W., Morgan N. G., Rumford G. M., Prince C. A. Effect of glucose on polyphosphoinositide metabolism in isolated rat islets of Langerhans. Biochem J. 1985 Apr 15;227(2):483–489. doi: 10.1042/bj2270483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osterrieder W., Brum G., Hescheler J., Trautwein W., Flockerzi V., Hofmann F. Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca2+ current. Nature. 1982 Aug 5;298(5874):576–578. doi: 10.1038/298576a0. [DOI] [PubMed] [Google Scholar]
- Reisine T., Heisler S., Hook V. Y., Axelrod J. Multireceptor-induced release of adrenocorticotropin from anterior pituitary tumor cells. Biochem Biophys Res Commun. 1982 Oct 15;108(3):1251–1257. doi: 10.1016/0006-291x(82)92134-9. [DOI] [PubMed] [Google Scholar]
- Schrey M. P., Brown B. L., Ekins R. P. Studies on the role of calcium and cyclic nucleotides in the control of TSH secretion. Mol Cell Endocrinol. 1978 Sep;11(3):249–264. doi: 10.1016/0303-7207(78)90012-6. [DOI] [PubMed] [Google Scholar]
- Surprenant A. Correlation between electrical activity and ACTH/beta-endorphin secretion in mouse pituitary tumor cells. J Cell Biol. 1982 Nov;95(2 Pt 1):559–566. doi: 10.1083/jcb.95.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zatz M., Reisine T. D. Lithium induces corticotropin secretion and desensitization in cultured anterior pituitary cells. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1286–1290. doi: 10.1073/pnas.82.4.1286. [DOI] [PMC free article] [PubMed] [Google Scholar]