Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Dec;82(24):8823–8826. doi: 10.1073/pnas.82.24.8823

Intracellular calcium regulates basolateral potassium channels in a chloride-secreting epithelium.

M J Welsh, J D McCann
PMCID: PMC391530  PMID: 2417229

Abstract

The two individual cell membranes of epithelia are functionally coupled, so that changes in apical membrane conductance are paralleled by changes in basolateral K+ conductance. However, the signal that regulates basolateral K+ conductance, thereby coupling the two membranes, is unknown. We tested the hypothesis that the cellular calcium concentration, [Ca2+]c, may regulate basolateral K+ conductance in canine tracheal epithelium, a Cl- -secreting epithelium that shows marked membrane coupling. Three findings support the hypothesis. First, the intracellular Ca2+ antagonist 8-(diethylamino)octyl 3,4,5-trimethoxybenzoate hydrochloride (TMB-8) attenuated the secretory response. Second, the secretagogue epinephrine increased [Ca2+]c, as measured with quin-2. Third, we found a K+ channel that was activated by Ca2+ on the cytosolic side of the membrane. Thus, cytosolic Ca2+ regulates the basolateral K+ conductance and may be the signal responsible for functional coupling of the two cell membranes.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Bazzaz F., Jayaram T. Ion transport by canine tracheal mucosa: effect of elevation of cellular calcium. Exp Lung Res. 1981 May;2(2):121–130. doi: 10.3109/01902148109052308. [DOI] [PubMed] [Google Scholar]
  2. Al-Bazzaz F., Yadava V. P., Westenfelder C. Modification of Na and Cl transport in canine tracheal mucosa by prostaglandins. Am J Physiol. 1981 Feb;240(2):F101–F105. doi: 10.1152/ajprenal.1981.240.2.F101. [DOI] [PubMed] [Google Scholar]
  3. Charo I. F., Feinman R. D., Detwiler T. C. Inhibition of platelet secretion by an antagonist of intracellular calcium. Biochem Biophys Res Commun. 1976 Oct 18;72(4):1462–1467. doi: 10.1016/s0006-291x(76)80178-7. [DOI] [PubMed] [Google Scholar]
  4. Chase H. S., Jr Does calcium couple the apical and basolateral membrane permeabilities in epithelia? Am J Physiol. 1984 Dec;247(6 Pt 2):F869–F876. doi: 10.1152/ajprenal.1984.247.6.F869. [DOI] [PubMed] [Google Scholar]
  5. Chiou C. Y., Malagodi M. H. Studies on the mechanism of action of a new Ca-2+ antagonist, 8-(N,N-diethylamino)octyl 3,4,5-trimethoxybenzoate hydrochloride in smooth and skeletal muscles. Br J Pharmacol. 1975 Feb;53(2):279–285. doi: 10.1111/j.1476-5381.1975.tb07359.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coleman D. L., Tuet I. K., Widdicombe J. H. Electrical properties of dog tracheal epithelial cells grown in monolayer culture. Am J Physiol. 1984 Mar;246(3 Pt 1):C355–C359. doi: 10.1152/ajpcell.1984.246.3.C355. [DOI] [PubMed] [Google Scholar]
  7. Davis C. W., Finn A. L. Sodium transport inhibition by amiloride reduces basolateral membrane potassium conductance in tight epithelia. Science. 1982 Apr 30;216(4545):525–527. doi: 10.1126/science.7071599. [DOI] [PubMed] [Google Scholar]
  8. Diamond J. M. Transcellular cross-talk between epithelial cell membranes. Nature. 1982 Dec 23;300(5894):683–685. doi: 10.1038/300683a0. [DOI] [PubMed] [Google Scholar]
  9. Diamond J. M. Twenty-first Bowditch lecture. The epithelial junction: bridge, gate, and fence. Physiologist. 1977 Feb;20(1):10–18. [PubMed] [Google Scholar]
  10. Gunter-Smith P. J., Grasset E., Schultz S. G. Sodium-coupled amino acid and sugar transport by Necturus small intestine. An equivalent electrical circuit analysis of a rheogenic co-transport system. J Membr Biol. 1982;66(1):25–39. doi: 10.1007/BF01868479. [DOI] [PubMed] [Google Scholar]
  11. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  12. Higgins J. T., Jr, Gebler B., Frömter E. Electrical properties of amphibian urinary bladder epithelia. II. The cell potential profile in necturus maculosus. Pflugers Arch. 1977 Oct 19;371(1-2):87–97. doi: 10.1007/BF00580776. [DOI] [PubMed] [Google Scholar]
  13. Hunter M., Lopes A. G., Boulpaep E. L., Giebisch G. H. Single channel recordings of calcium-activated potassium channels in the apical membrane of rabbit cortical collecting tubules. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4237–4239. doi: 10.1073/pnas.81.13.4237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Latorre R., Miller C. Conduction and selectivity in potassium channels. J Membr Biol. 1983;71(1-2):11–30. doi: 10.1007/BF01870671. [DOI] [PubMed] [Google Scholar]
  15. Marty A. Ca-dependent K channels with large unitary conductance in chromaffin cell membranes. Nature. 1981 Jun 11;291(5815):497–500. doi: 10.1038/291497a0. [DOI] [PubMed] [Google Scholar]
  16. Maruyama Y., Gallacher D. V., Petersen O. H. Voltage and Ca2+-activated K+ channel in baso-lateral acinar cell membranes of mammalian salivary glands. Nature. 1983 Apr 28;302(5911):827–829. doi: 10.1038/302827a0. [DOI] [PubMed] [Google Scholar]
  17. Petersen O. H., Maruyama Y. Calcium-activated potassium channels and their role in secretion. Nature. 1984 Feb 23;307(5953):693–696. doi: 10.1038/307693a0. [DOI] [PubMed] [Google Scholar]
  18. Sakmann B., Trube G. Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart. J Physiol. 1984 Feb;347:641–657. doi: 10.1113/jphysiol.1984.sp015088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sakmann B., Trube G. Voltage-dependent inactivation of inward-rectifying single-channel currents in the guinea-pig heart cell membrane. J Physiol. 1984 Feb;347:659–683. doi: 10.1113/jphysiol.1984.sp015089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schultz S. G. Homocellular regulatory mechanisms in sodium-transporting epithelia: avoidance of extinction by "flush-through". Am J Physiol. 1981 Dec;241(6):F579–F590. doi: 10.1152/ajprenal.1981.241.6.F579. [DOI] [PubMed] [Google Scholar]
  21. Shorofsky S. R., Field M., Fozzard H. A. Electrophysiology of Cl secretion in canine trachea. J Membr Biol. 1983;72(1-2):105–115. doi: 10.1007/BF01870318. [DOI] [PubMed] [Google Scholar]
  22. Smith P. L., Frizzell R. A. Chloride secretion by canine tracheal epithelium: IV. Basolateral membrane K permeability parallels secretion rate. J Membr Biol. 1984;77(3):187–199. doi: 10.1007/BF01870568. [DOI] [PubMed] [Google Scholar]
  23. Smith P. L., Welsh M. J., Stoff J. S., Frizzell R. A. Chloride secretion by canine tracheal epithelium: I. Role of intracellular c AMP levels. J Membr Biol. 1982;70(3):217–226. doi: 10.1007/BF01870564. [DOI] [PubMed] [Google Scholar]
  24. Smolen J. E., Korchak H. M., Weissmann G. The roles of extracellular and intracellular calcium in lysosomal enzyme release and superoxide anion generation by human neutrophils. Biochim Biophys Acta. 1981 Nov 5;677(3-4):512–520. doi: 10.1016/0304-4165(81)90267-1. [DOI] [PubMed] [Google Scholar]
  25. Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
  26. Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. U H. S., Evans-Layng M. Polar redistribution of Na+K+ATPase in aggregating MDCK cells. Exp Cell Res. 1983 Jun;146(1):192–198. doi: 10.1016/0014-4827(83)90337-3. [DOI] [PubMed] [Google Scholar]
  28. Welsh M. J. Anthracene-9-carboxylic acid inhibits an apical membrane chloride conductance in canine tracheal epithelium. J Membr Biol. 1984;78(1):61–71. doi: 10.1007/BF01872533. [DOI] [PubMed] [Google Scholar]
  29. Welsh M. J. Basolateral membrane potassium conductance is independent of sodium pump activity and membrane voltage in canine tracheal epithelium. J Membr Biol. 1985;84(1):25–33. doi: 10.1007/BF01871645. [DOI] [PubMed] [Google Scholar]
  30. Welsh M. J. Evidence for basolateral membrane potassium conductance in canine tracheal epithelium. Am J Physiol. 1983 May;244(5):C377–C384. doi: 10.1152/ajpcell.1983.244.5.C377. [DOI] [PubMed] [Google Scholar]
  31. Welsh M. J., Smith P. L., Frizzell R. A. Chloride secretion by canine tracheal epithelium: III. Membrane resistances and electromotive forces. J Membr Biol. 1983;71(3):209–218. doi: 10.1007/BF01875462. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES