Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Dec;82(24):8827–8831. doi: 10.1073/pnas.82.24.8827

Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus.

R G Vogt, L M Riddiford, G D Prestwich
PMCID: PMC391531  PMID: 3001718

Abstract

Behavioral and electrophysiological evidence has suggested that sex pheromone is rapidly inactivated within the sensory hairs soon after initiation of the action-potential spike. We report the isolation and characterization of a sex-pheromone-degrading enzyme from the sensory hairs of the silkmoth Antheraea polyphemus. In the presence of this enzyme at physiological concentration, the pheromone [(6E,11Z)-hexadecadienyl acetate] has an estimated half-life of 15 msec. Our findings suggest a molecular model for pheromone reception in which a previously reported pheromone-binding protein acts as a pheromone carrier, and an enzyme acts as a rapid pheromone inactivator, maintaining a low stimulus noise level within the sensory hairs.

Full text

PDF
8827

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames G. F. Resolution of bacterial proteins by polyacrylamide gel electrophoresis on slabs. Membrane, soluble, and periplasmic fractions. J Biol Chem. 1974 Jan 25;249(2):634–644. [PubMed] [Google Scholar]
  2. Kasang G. Uptake of the sex pheromone 3H-bombykol and related compounds by male and female Bombyx antennae. J Insect Physiol. 1974 Dec;20(12):2407–2422. doi: 10.1016/0022-1910(74)90027-4. [DOI] [PubMed] [Google Scholar]
  3. Keil T. A. Surface coats of pore tubules and olfactory sensory dendrites of a silkmoth revealed by cationic markers. Tissue Cell. 1984;16(5):705–717. doi: 10.1016/0040-8166(84)90004-1. [DOI] [PubMed] [Google Scholar]
  4. Kennedy J. S., Marsh D. Pheromone-regulated anemotaxis in flying moths. Science. 1974 May 31;184(4140):999–1001. doi: 10.1126/science.184.4140.999. [DOI] [PubMed] [Google Scholar]
  5. Klein U., Keil T. A. Dendritic membrane from insect olfactory hairs: isolation method and electron microscopic observations. Cell Mol Neurobiol. 1984 Dec;4(4):385–396. doi: 10.1007/BF00733599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  7. Schneider D., Kasang G., Kaissling K. E. Bestimmung der Riechschwelle von Bombyx mori mit Tritium-markiertem Bombykol. Naturwissenschaften. 1968 Aug;55(8):395–395. doi: 10.1007/BF00593307. [DOI] [PubMed] [Google Scholar]
  8. Shaw C. R., Prasad R. Starch gel electrophoresis of enzymes--a compilation of recipes. Biochem Genet. 1970 Apr;4(2):297–320. doi: 10.1007/BF00485780. [DOI] [PubMed] [Google Scholar]
  9. Steinbrecht R. A. Cryofixation without cryoprotectants. Freeze substitution and freeze etching of an insect olfactory receptor. Tissue Cell. 1980;12(1):73–100. doi: 10.1016/0040-8166(80)90053-1. [DOI] [PubMed] [Google Scholar]
  10. Steinbrecht R. A., Müller B. On the stimulus conducting structures in insect olfactory receptors. Z Zellforsch Mikrosk Anat. 1971;117(4):570–575. doi: 10.1007/BF00330716. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES