Abstract
Behavioral and electrophysiological evidence has suggested that sex pheromone is rapidly inactivated within the sensory hairs soon after initiation of the action-potential spike. We report the isolation and characterization of a sex-pheromone-degrading enzyme from the sensory hairs of the silkmoth Antheraea polyphemus. In the presence of this enzyme at physiological concentration, the pheromone [(6E,11Z)-hexadecadienyl acetate] has an estimated half-life of 15 msec. Our findings suggest a molecular model for pheromone reception in which a previously reported pheromone-binding protein acts as a pheromone carrier, and an enzyme acts as a rapid pheromone inactivator, maintaining a low stimulus noise level within the sensory hairs.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames G. F. Resolution of bacterial proteins by polyacrylamide gel electrophoresis on slabs. Membrane, soluble, and periplasmic fractions. J Biol Chem. 1974 Jan 25;249(2):634–644. [PubMed] [Google Scholar]
- Kasang G. Uptake of the sex pheromone 3H-bombykol and related compounds by male and female Bombyx antennae. J Insect Physiol. 1974 Dec;20(12):2407–2422. doi: 10.1016/0022-1910(74)90027-4. [DOI] [PubMed] [Google Scholar]
- Keil T. A. Surface coats of pore tubules and olfactory sensory dendrites of a silkmoth revealed by cationic markers. Tissue Cell. 1984;16(5):705–717. doi: 10.1016/0040-8166(84)90004-1. [DOI] [PubMed] [Google Scholar]
- Kennedy J. S., Marsh D. Pheromone-regulated anemotaxis in flying moths. Science. 1974 May 31;184(4140):999–1001. doi: 10.1126/science.184.4140.999. [DOI] [PubMed] [Google Scholar]
- Klein U., Keil T. A. Dendritic membrane from insect olfactory hairs: isolation method and electron microscopic observations. Cell Mol Neurobiol. 1984 Dec;4(4):385–396. doi: 10.1007/BF00733599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Schneider D., Kasang G., Kaissling K. E. Bestimmung der Riechschwelle von Bombyx mori mit Tritium-markiertem Bombykol. Naturwissenschaften. 1968 Aug;55(8):395–395. doi: 10.1007/BF00593307. [DOI] [PubMed] [Google Scholar]
- Shaw C. R., Prasad R. Starch gel electrophoresis of enzymes--a compilation of recipes. Biochem Genet. 1970 Apr;4(2):297–320. doi: 10.1007/BF00485780. [DOI] [PubMed] [Google Scholar]
- Steinbrecht R. A. Cryofixation without cryoprotectants. Freeze substitution and freeze etching of an insect olfactory receptor. Tissue Cell. 1980;12(1):73–100. doi: 10.1016/0040-8166(80)90053-1. [DOI] [PubMed] [Google Scholar]
- Steinbrecht R. A., Müller B. On the stimulus conducting structures in insect olfactory receptors. Z Zellforsch Mikrosk Anat. 1971;117(4):570–575. doi: 10.1007/BF00330716. [DOI] [PubMed] [Google Scholar]