Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Aug;81(15):4781–4784. doi: 10.1073/pnas.81.15.4781

Structure of deoxyhemoglobin Cowtown [His HC3(146) beta----Leu]: origin of the alkaline Bohr effect and electrostatic interactions in hemoglobin.

M F Perutz, G Fermi, T B Shih
PMCID: PMC391574  PMID: 6589624

Abstract

Hemoglobin Cowtown [His HC3(146)-beta----Leu] exhibits high oxygen affinity and a halved alkaline Bohr effect. X-ray analysis shows the COOH-terminal leucine to be in equilibrium between two positions: one with the salt bridge between the terminal carboxyl and Lys C5(40)alpha intact and the leucyl side chain leaning against main chain atoms of helices F and FG and the other with the terminal salt bridge broken and the leucyl side chain touching Pro C2(37)alpha. Structural changes are confined to the immediate neighborhood of the COOH terminus, showing the halving of the alkaline Bohr effect to be due directly to the loss of the histidine, without significant contributions from changes in pK values of other ionizable groups due to structural changes elsewhere.

Full text

PDF
4781

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin J. M. The structure of human carbonmonoxy haemoglobin at 2.7 A resolution. J Mol Biol. 1980 Jan 15;136(2):103–128. doi: 10.1016/0022-2836(80)90308-3. [DOI] [PubMed] [Google Scholar]
  2. Como P. F., Kennett D., Wilkinson T., Kronenberg H. A new hemoglobin with high oxygen affinity--hemoglobin bunbury: alpha 2 beta 2 [94 (FG1) Asp replaced by Asn]. Hemoglobin. 1983;7(5):413–421. doi: 10.3109/03630268309038410. [DOI] [PubMed] [Google Scholar]
  3. Fermi G., Perutz M. F., Shaanan B., Fourme R. The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. J Mol Biol. 1984 May 15;175(2):159–174. doi: 10.1016/0022-2836(84)90472-8. [DOI] [PubMed] [Google Scholar]
  4. Fermi G. Three-dimensional fourier synthesis of human deoxyhaemoglobin at 2-5 A resolution: refinement of the atomic model. J Mol Biol. 1975 Sep 15;97(2):237–256. doi: 10.1016/s0022-2836(75)80037-4. [DOI] [PubMed] [Google Scholar]
  5. Greer J., Perutz M. F. Three dimensional structure of haemoglobin Rainier. Nat New Biol. 1971 Apr 28;230(17):261–264. doi: 10.1038/newbio230261a0. [DOI] [PubMed] [Google Scholar]
  6. Harano T., Harano K., Shibata S., Ueda S., Imai K., Tsuneshige A., Yamada H., Seki M., Fukui H. Hemoglobin Kariya [alpha 40 (C5) Lys leads to Glu]: a new hemoglobin variant with an increased oxygen affinity. FEBS Lett. 1983 Mar 21;153(2):332–334. doi: 10.1016/0014-5793(83)80636-x. [DOI] [PubMed] [Google Scholar]
  7. Imai K., Hamilton H. B., Miyaji T., Shibata S. Physicochemical studies of the relation between structure and function in hemoglobin Hiroshima (HC3 , histidine leads to aspartate). Biochemistry. 1972 Jan 4;11(1):114–121. doi: 10.1021/bi00751a020. [DOI] [PubMed] [Google Scholar]
  8. Imai K. The Monod-Wyman-Changeux allosteric model describes haemoglobin oxygenation with only one adjustable parameter. J Mol Biol. 1983 Jul 5;167(3):741–749. doi: 10.1016/s0022-2836(83)80107-7. [DOI] [PubMed] [Google Scholar]
  9. Kilmartin J. V., Arnone A., Fogg J. Specific modification of the alpha chain C-terminal carboxyl group of hemoglobin by trypsin-catalyzed hydrazinolysis. Biochemistry. 1977 Nov 29;16(24):5393–5397. doi: 10.1021/bi00643a035. [DOI] [PubMed] [Google Scholar]
  10. Kilmartin J. V., Breen J. J., Roberts G. C., Ho C. Direct measurement of the pK values of an alkaline Bohr group in human hemoglobin. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1246–1249. doi: 10.1073/pnas.70.4.1246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kilmartin J. V., Fogg J. H., Perutz M. F. Role of C-terminal histidine in the alkaline Bohr effect of human hemoglobin. Biochemistry. 1980 Jul 8;19(14):3189–3183. doi: 10.1021/bi00555a013. [DOI] [PubMed] [Google Scholar]
  12. Kilmartin J. V., Rossi-Bernardi L. Inhibition of CO2 combination and reduction of the Bohr effect in haemoglobin chemically modified at its alpha-amino groups. Nature. 1969 Jun 28;222(5200):1243–1246. doi: 10.1038/2221243a0. [DOI] [PubMed] [Google Scholar]
  13. Matthew J. B., Hanania G. I., Gurd F. R. Electrostatic effects in hemoglobin: Bohr effect and ionic strength dependence of individual groups. Biochemistry. 1979 May 15;18(10):1928–1936. doi: 10.1021/bi00577a012. [DOI] [PubMed] [Google Scholar]
  14. Matthew J. B., Hanania G. I., Gurd F. R. Electrostatic effects in hemoglobin: hydrogen ion equilibria in human deoxy- and oxyhemoglobin A. Biochemistry. 1979 May 15;18(10):1919–1928. doi: 10.1021/bi00577a011. [DOI] [PubMed] [Google Scholar]
  15. Moo-Penn W. F., Jue D. L., Johnson M. H., Wilson S. M., Therrell B., Jr, Schmidt R. M. Hemoglobin Tarrant: alpha126(H9) Asp leads to Asn. A new hemoglobin variant in the alpha1beta1 contact region showing high oxygen affinity and reduced cooperativity. Biochim Biophys Acta. 1977 Feb 22;490(2):443–451. doi: 10.1016/0005-2795(77)90019-8. [DOI] [PubMed] [Google Scholar]
  16. Muirhead H., Cox J. M., Mazzarella L., Perutz M. F. Structure and function of haemoglobin. 3. A three-dimensional fourier synthesis of human deoxyhaemoglobin at 5.5 Angstrom resolution. J Mol Biol. 1967 Aug 28;28(1):117–156. doi: 10.1016/s0022-2836(67)80082-2. [DOI] [PubMed] [Google Scholar]
  17. O'Donnell S., Mandaro R., Schuster T. M., Arnone A. X-ray diffraction and solution studies of specifically carbamylated human hemoglobin A. Evidence for the location of a proton- and oxygen-linked chloride binding site at valine 1 alpha. J Biol Chem. 1979 Dec 10;254(23):12204–12208. [PubMed] [Google Scholar]
  18. Perutz M. F., Kilmartin J. V., Nishikura K., Fogg J. H., Butler P. J., Rollema H. S. Identification of residues contributing to the Bohr effect of human haemoglobin. J Mol Biol. 1980 Apr 15;138(3):649–668. doi: 10.1016/s0022-2836(80)80022-2. [DOI] [PubMed] [Google Scholar]
  19. Perutz M. F., Muirhead H., Mazzarella L., Crowther R. A., Greer J., Kilmartin J. V. Identification of residues responsible for the alkaline Bohr effect in haemoglobin. Nature. 1969 Jun 28;222(5200):1240–1243. doi: 10.1038/2221240a0. [DOI] [PubMed] [Google Scholar]
  20. Perutz M. F., Pulsinelli P., Eyck L. T., Kilmartin J. V., Shibata S., Iuchi I., Miyaji T., Hamilton H. B. Haemoglobin Hiroshima and the mechanism of the alkaline Bohr effect. Nat New Biol. 1971 Aug 4;232(31):147–149. doi: 10.1038/newbio232147a0. [DOI] [PubMed] [Google Scholar]
  21. Perutz M. F., TenEyck L. F. Stereochemistry of cooperative effects in hemoglobin. Cold Spring Harb Symp Quant Biol. 1972;36:295–310. doi: 10.1101/sqb.1972.036.01.040. [DOI] [PubMed] [Google Scholar]
  22. Phillips S. E., Perutz M. F., Poyart C., Wajcman H. Structure and function of haemoglobin Barcelona Asp FG1(94) beta leads to His. J Mol Biol. 1983 Mar 5;164(3):477–480. doi: 10.1016/0022-2836(83)90062-1. [DOI] [PubMed] [Google Scholar]
  23. Russu I. M., Ho N. T., Ho C. A proton nuclear magnetic resonance investigation of histidyl residues in human normal adult hemoglobin. Biochemistry. 1982 Sep 28;21(20):5031–5043. doi: 10.1021/bi00263a029. [DOI] [PubMed] [Google Scholar]
  24. Russu I. M., Ho N. T., Ho C. Role of the beta 146 histidyl residue in the alkaline Bohr effect of hemoglobin. Biochemistry. 1980 Mar 4;19(5):1043–1052. doi: 10.1021/bi00546a033. [DOI] [PubMed] [Google Scholar]
  25. Shaanan B. Structure of human oxyhaemoglobin at 2.1 A resolution. J Mol Biol. 1983 Nov 25;171(1):31–59. doi: 10.1016/s0022-2836(83)80313-1. [DOI] [PubMed] [Google Scholar]
  26. Shih T., Jones R. T., Bonaventura J., Bonaventura C., Schneider R. G. Involvement of His HC3 (146) beta in the Bohr effect of human hemoglobin. Studies of native and N-ethylmaleimide-treated hemoglobin A and hemoglobin Cowtown (beta 146 His replaced by Leu). J Biol Chem. 1984 Jan 25;259(2):967–974. [PubMed] [Google Scholar]
  27. Warshel A., Russell S. T., Churg A. K. Macroscopic models for studies of electrostatic interactions in proteins: limitations and applicability. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4785–4789. doi: 10.1073/pnas.81.15.4785. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES