Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Aug;81(15):4903–4907. doi: 10.1073/pnas.81.15.4903

Regulation of Cat1 gene expression in the scutellum of maize during early sporophytic development.

J M Chandlee, J G Scandalios
PMCID: PMC391600  PMID: 6589635

Abstract

A regulatory element has been identified in maize that appears to exert an effect specifically on Cat1 gene expression in the scutellum of maize during early sporophytic development. Cat1 encodes CAT-1 catalase, one of two forms of catalase expressed in the scutellum during this developmental time period. Density-labeling experiments indicate that the regulatory element influences the overall levels of CAT-1 protein synthesis in the scutellum but has no effect on CAT-2 protein synthesis. Immunoprecipitation experiments of in vitro translation products suggest that this element has an effect on the level of translatable Cat1 mRNA associated with the scutellar polysomes. The element exhibits additive inheritance and is tissue and time specific in its action. This element, therefore, meets all the criteria of a regulatory gene and has been designated Car2. The element acts to regulate the temporal expression of the Cat1 structural locus in maize.

Full text

PDF
4903

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham I., Doane W. W. Genetic regulation of tissue-specific expression of amylase structural genes in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4446–4450. doi: 10.1073/pnas.75.9.4446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allendorf F. W., Knudsen K. L., Phelps S. R. Identification of a gene regulating the tissue expression of a phosphoglucomutase locus in rainbow trout. Genetics. 1982 Oct;102(2):259–268. doi: 10.1093/genetics/102.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BEERS R. F., Jr, SIZER I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar;195(1):133–140. [PubMed] [Google Scholar]
  4. Bernstine E. G., Koh C. A cis-active regulatory gene in the mouse: direct demonstration of cis-active control of the rate of enzyme subunit synthesis. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4193–4195. doi: 10.1073/pnas.77.7.4193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chovnick A., Gelbart W., McCarron M., Osmond B. Organization of the rosy locus in Drosophila melanogaster: evidence for a control element adjacent to the xanthine dehydrogenase structural element. Genetics. 1976 Oct;84(2):233–255. doi: 10.1093/genetics/84.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooper T. G., Beevers H. Mitochondria and glyoxysomes from castor bean endosperm. Enzyme constitutents and catalytic capacity. J Biol Chem. 1969 Jul 10;244(13):3507–3513. [PubMed] [Google Scholar]
  7. Dickinson W. J. A genetic locus affecting the developmental expression of an enzyme in Drosophilia melanogaster. Dev Biol. 1975 Jan;42(1):131–140. doi: 10.1016/0012-1606(75)90319-x. [DOI] [PubMed] [Google Scholar]
  8. Felder M. R., Scandalios J. G., Liu E. H. Purification and partial characterization of two genetically defined alcohol dehydrogenase isozymes in maize. Biochim Biophys Acta. 1973 Jul 12;317(1):149–159. doi: 10.1016/0005-2795(73)90207-9. [DOI] [PubMed] [Google Scholar]
  9. Grossman A. Analysis of genetic variation affecting the relative activities of fast and slow ADH dimers in Drosophila melanogaster heterozygotes. Biochem Genet. 1980 Aug;18(7-8):765–780. doi: 10.1007/BF00484592. [DOI] [PubMed] [Google Scholar]
  10. Holmes R. S. Genetics and ontogeny of alcohol dehydrogenase isozymes in the mouse: evidence for a cis-acting regulator gene (Adt-i) controlling C2 isozyme expression in reproductive tissues and close linkage of Adh-3 and Adt-i on chromosome 3. Biochem Genet. 1979 Jun;17(5-6):461–472. doi: 10.1007/BF00498884. [DOI] [PubMed] [Google Scholar]
  11. King J. J., McDonald J. F. Genetic Localization and Biochemical Characterization of a TRANS-Acting Regulatory Effect in Drosophila. Genetics. 1983 Sep;105(1):55–69. doi: 10.1093/genetics/105.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Laurell C. B. Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies. Anal Biochem. 1966 Apr;15(1):45–52. doi: 10.1016/0003-2697(66)90246-6. [DOI] [PubMed] [Google Scholar]
  14. Lingappa V. R., Lingappa J. R., Prasad R., Ebner K. E., Blobel G. Coupled cell-free synthesis, segregation, and core glycosylation of a secretory protein. Proc Natl Acad Sci U S A. 1978 May;75(5):2338–2342. doi: 10.1073/pnas.75.5.2338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lusis A. J., Chapman V. M., Wangenstein R. W., Paigen K. Trans-acting temporal locus within the beta-glucuronidase gene complex. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4398–4402. doi: 10.1073/pnas.80.14.4398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Paigen K. Acid hydrolases as models of genetic control. Annu Rev Genet. 1979;13:417–466. doi: 10.1146/annurev.ge.13.120179.002221. [DOI] [PubMed] [Google Scholar]
  17. Peterson A. C., Wong G. G. Genetic regulation of glucose phosphate isomerase in mouse oocytes. Nature. 1978 Nov 16;276(5685):267–269. doi: 10.1038/276267a0. [DOI] [PubMed] [Google Scholar]
  18. Quail P. H., Scandalios J. G. Turnover of genetically defined catalase isozymes in maize. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1402–1406. doi: 10.1073/pnas.68.7.1402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Scandalios J. G., Chang D. Y., McMillin D. E., Tsaftaris A., Moll R. H. Genetic regulation of the catalase developmental program in maize scutellum: Identification of a temporal regulatory gene. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5360–5364. doi: 10.1073/pnas.77.9.5360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Scandalios J. G. Subunit dissociation and recombination of catalase isozymes. Proc Natl Acad Sci U S A. 1965 May;53(5):1035–1040. doi: 10.1073/pnas.53.5.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Woodman J. C., Freeling M. Identification of a genetic element that controls the organ-specific expression of adh1 in maize. Genetics. 1981 Jun;98(2):357–378. doi: 10.1093/genetics/98.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yang Ning-Sun, Scandalios J. G. De novo synthesis and developmental control of the multiple gene-controlled malate dehydrogenase isozymes in maize scutella. Biochim Biophys Acta. 1975 Apr 19;384(2):293–306. doi: 10.1016/0005-2744(75)90031-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES