Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Aug;81(15):4912–4916. doi: 10.1073/pnas.81.15.4912

The heterogeneity and functional capacities of human thymocyte subpopulations.

C Gelin, L Boumsell, J Dausset, A Bernard
PMCID: PMC391602  PMID: 6611554

Abstract

Analysis of human thymocytes with monoclonal antibodies belonging to five distinct clusters of differentiation (CD1, CD3-CD5, CD8) revealed a high degree of phenotypic heterogeneity. Six subpopulations could be defined in the thymic compartment characterized by the presence of CD1 antigens (cortical type); four subpopulations could be defined in the compartment characterized by the lack of CD1 but by the presence of CD5 antigens (medullary type); two subpopulations could be defined in the compartment characterized by the lack of both CD1 and CD5 antigens. Thymic samples could be categorized as either high responder or low responder to phytohemagglutinin alone. The defect of low responders was, to a large extent, attributable to a lack of interleukin 2 availability in the medullary type compartment. Yet, cortical-type subpopulations, both from high and low responders, were able to respond to phytohemagglutinin alone to the same extent. Undesirable cell contamination was excluded by limiting dilution analysis. Moreover, cortical-type cells were found to be able to respond to concanavalin A alone, while medullary-type cells and total populations did not respond to concanavalin A alone. Thus, the human thymus includes a number of cell subpopulations involved in complex functional interactions.

Full text

PDF
4912

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez J. M., Silva A., de Landazuri M. O. Human T cell growth factor. I. Optimal conditions for its production. J Immunol. 1979 Sep;123(3):977–983. [PubMed] [Google Scholar]
  2. Bernard A., Boumsell L., Reinherz E. L., Nadler L. M., Ritz J., Coppin H., Richard Y., Valensi F., Dausset J., Flandrin G. Cell surface characterization of malignant T cells from lymphoblastic lymphoma using monoclonal antibodies: evidence for phenotypic differences between malignant T cells from patients with acute lymphoblastic leukemia and lymphoblastic lymphoma. Blood. 1981 Jun;57(6):1105–1110. [PubMed] [Google Scholar]
  3. Bernard A., Gay-Bellile V., Amiot M., Caillou B., Charbord P., Boumsell L. A novel human leukocyte differentiation antigen: monoclonal antibody anti-D44 defines a 28 Kd molecule present on immature hematologic cells and a subpopulation of mature T cells. J Immunol. 1984 May;132(5):2338–2344. [PubMed] [Google Scholar]
  4. Beverley P. C., Callard R. E. Distinctive functional characteristics of human "T" lymphocytes defined by E rosetting or a monoclonal anti-T cell antibody. Eur J Immunol. 1981 Apr;11(4):329–334. doi: 10.1002/eji.1830110412. [DOI] [PubMed] [Google Scholar]
  5. Bhan A. K., Reinherz E. L., Poppema S., McCluskey R. T., Schlossman S. F. Location of T cell and major histocompatibility complex antigens in the human thymus. J Exp Med. 1980 Oct 1;152(4):771–782. doi: 10.1084/jem.152.4.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boumsell L., Bernard A. High efficiency of Biozzi's high responder mouse strain in the generation of antibody secreting hybridomas. J Immunol Methods. 1980;38(3-4):225–229. doi: 10.1016/0022-1759(80)90270-7. [DOI] [PubMed] [Google Scholar]
  7. Boumsell L., Coppin H., Pham D., Raynal B., Lemerle J., Dausset J., Bernard A. An antigen shared by a human T cell subset and B cell chronic lymphocytic leukemic cells. Distribution on normal and malignant lymphoid cells. J Exp Med. 1980 Jul 1;152(1):229–234. doi: 10.1084/jem.152.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ceredig R., Glasebrook A. L., MacDonald H. R. Phenotypic and functional properties of murine thymocytes. I. Precursors of cytolytic T lymphocytes and interleukin 2-producing cells are all contained within a subpopulation of "mature" thymocytes as analyzed by monoclonal antibodies and flow microfluorometry. J Exp Med. 1982 Feb 1;155(2):358–379. doi: 10.1084/jem.155.2.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chouaib S., Fradelizi D. The mechanism of inhibition of human IL 2 production. J Immunol. 1982 Dec;129(6):2463–2468. [PubMed] [Google Scholar]
  10. Gillis S., Ferm M. M., Ou W., Smith K. A. T cell growth factor: parameters of production and a quantitative microassay for activity. J Immunol. 1978 Jun;120(6):2027–2032. [PubMed] [Google Scholar]
  11. Haynes B. F., Harden E. A., Telen M. J., Hemler M. E., Strominger J. L., Palker T. J., Scearce R. M., Eisenbarth G. S. Differentiation of human T lymphocytes. I. Acquisition of a novel human cell surface protein (p80) during normal intrathymic T cell maturation. J Immunol. 1983 Sep;131(3):1195–1200. [PubMed] [Google Scholar]
  12. Hayward A. R., Kurnick J. T., Clarke D. R. T cell growth factor-enhanced PHA response of human thymus cells: requirement for T3+ cells. J Immunol. 1981 Nov;127(5):2079–2082. [PubMed] [Google Scholar]
  13. Irlé C., Piguet P. F., Vassalli P. In vitro maturation of immature thymocytes into immunocompetent T cells in the absence of direct thymic influence. J Exp Med. 1978 Jul 1;148(1):32–45. doi: 10.1084/jem.148.1.32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kruisbeek A. M., Hodes R. J., Singer A. Cytotoxic T lymphocyte responses by chimeric thymocytes. Self-recognition is determined early in T cell development. J Exp Med. 1981 Jan 1;153(1):13–29. doi: 10.1084/jem.153.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Northoff H., Carter C., Oppenheim J. J. Inhibition of concanavalin A-induced human lymphocyte mitogenic factor (Interleukin-2) production by suppressor T lymphocytes. J Immunol. 1980 Oct;125(4):1823–1828. [PubMed] [Google Scholar]
  16. Palacios R. Mechanism of T cell activation: role and functional relationship of HLA-DR antigens and interleukins. Immunol Rev. 1982;63:73–110. doi: 10.1111/j.1600-065x.1982.tb00412.x. [DOI] [PubMed] [Google Scholar]
  17. Reinherz E. L., Kung P. C., Goldstein G., Levey R. H., Schlossman S. F. Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1588–1592. doi: 10.1073/pnas.77.3.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reinherz E. L., Kung P. C., Goldstein G., Schlossman S. F. Separation of functional subsets of human T cells by a monoclonal antibody. Proc Natl Acad Sci U S A. 1979 Aug;76(8):4061–4065. doi: 10.1073/pnas.76.8.4061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Richard Y., Boumsell L., Coppin H., Mishall Z., Lemerle J., Bernard A. Correspondence between lectin-defined and surface antigen-defined cell subpopulations in the human thymus: its variation during ontogeny. J Immunol. 1981 Jul;127(1):252–255. [PubMed] [Google Scholar]
  20. Stutman O. Intrathymic and extrathymic T cell maturation. Immunol Rev. 1978;42:138–184. doi: 10.1111/j.1600-065x.1978.tb00261.x. [DOI] [PubMed] [Google Scholar]
  21. Taswell C. Limiting dilution assays for the determination of immunocompetent cell frequencies. I. Data analysis. J Immunol. 1981 Apr;126(4):1614–1619. [PubMed] [Google Scholar]
  22. Terhorst C., van Agthoven A., LeClair K., Snow P., Reinherz E., Schlossman S. Biochemical studies of the human thymocyte cell-surface antigens T6, T9 and T10. Cell. 1981 Mar;23(3):771–780. doi: 10.1016/0092-8674(81)90441-4. [DOI] [PubMed] [Google Scholar]
  23. Umiel T., Daley J. F., Bhan A. K., Levey R. H., Schlossman S. F., Reinherz E. L. Acquisition of immune competence by a subset of human cortical thymocytes expressing mature T cell antigens. J Immunol. 1982 Sep;129(3):1054–1060. [PubMed] [Google Scholar]
  24. Wagner H., Hardt C., Bartlett R., Röllinghoff M., Pfizenmaier K. Intrathymic differentiation of cytotoxic T lymphocyte (CTL) precursors. I. The CTL immunocompetence of peanut agglutinin-positive (cortical) and negative (medullary) Lyt 123 thymocytes. J Immunol. 1980 Dec;125(6):2532–2538. [PubMed] [Google Scholar]
  25. Wei-Feng C., Scollay R., Shortman K. The functional capacity of thymus subpopulations: limit-dilution analysis of all precursors of cytotoxic lymphocytes and of all T cells capable of proliferation in subpopulations separated by the use of peanut agglutinin. J Immunol. 1982 Jul;129(1):18–24. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES