Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Aug;81(16):5160–5164. doi: 10.1073/pnas.81.16.5160

Receptors for human gamma interferon: binding and crosslinking of 125I-labeled recombinant human gamma interferon to receptors on WISH cells.

F H Sarkar, S L Gupta
PMCID: PMC391657  PMID: 6089181

Abstract

Purified recombinant human gamma interferon (HuIFN-gamma), labeled with 125I (125I-HuIFN-gamma), was used to study receptors for HuIFN-gamma on human WISH cells. 125I-HuIFN-gamma was bound to WISH cells, and this binding was displaced by unlabeled HuIFN-gamma but not by unlabeled recombinant HuIFN-alpha 2 or [Ser17]HuIFN-beta (HuIFN-beta with serine substituted for cysteine at position 17), indicating the presence of specific binding sites for HuIFN-gamma. The cell-bound 125I-HuIFN-gamma was crosslinked with disuccinimidyl suberate or ethylene glycol bis(succinimidyl succinate), which yielded a complex of Mr approximately 105,000 +/- 5000 as analyzed by NaDodSO4/PAGE. The formation of this complex was prevented by preincubation of cells with unlabeled HuIFN-gamma but not with HuIFN-alpha 2 or [Ser17]HuIFN-beta, indicating that HuIFN-gamma binds to a specific receptor molecule and that HuIFN-alpha 2 or HuIFN-beta do not interact with this receptor. Experiments were carried out with 125I-labeled recombinant [Ser17]HuIFN-beta (125I-[Ser17]HuIFN-beta) to verify this conclusion. Binding and crosslinking of 125I-[Ser17]HuIFN-beta to human WISH cells and Daudi cells yielded a complex of Mr approximately 150,000 similar to that obtained with 125I-HuIFN-alpha 2 as described earlier. The formation of this Mr 150,000 complex with 125I-[Ser17]HuIFN-beta was displaced by unlabeled [Ser17]HuIFN-beta and by HuIFN-alpha 2 but not by HuIFN-gamma, indicating that [Ser17]HuIFN-beta binds to the same receptor as does HuIFN-alpha 2, identified earlier, and that HuIFN-gamma does not compete with 125I-[Ser17]HuIFN-beta for this receptor. We conclude that HuIFN-gamma interacts with specific receptors that are distinctly different from the receptors recognized by HuIFN-alpha and HuIFN-beta.

Full text

PDF
5160

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguet M., Blanchard B. High affinity binding of 125I-Labeled mouse interferon to a specific cell surface receptor. II. Analysis of binding properties. Virology. 1981 Dec;115(2):249–261. doi: 10.1016/0042-6822(81)90108-2. [DOI] [PubMed] [Google Scholar]
  2. Anderson P., Yip Y. K., Vilcek J. Human interferon-gamma is internalized and degraded by cultured fibroblasts. J Biol Chem. 1983 May 25;258(10):6497–6502. [PubMed] [Google Scholar]
  3. Anderson P., Yip Y. K., Vilcek J. Specific binding of 125I-human interferon-gamma to high affinity receptors on human fibroblasts. J Biol Chem. 1982 Oct 10;257(19):11301–11304. [PubMed] [Google Scholar]
  4. Baglioni C. Interferon-induced enzymatic activities and their role in the antriviral state. Cell. 1979 Jun;17(2):255–264. doi: 10.1016/0092-8674(79)90151-x. [DOI] [PubMed] [Google Scholar]
  5. Baglioni C., Maroney P. A. Mechanisms of action of human interferons. Induction of 2'5'-oligo(A) polymerase. J Biol Chem. 1980 Sep 25;255(18):8390–8393. [PubMed] [Google Scholar]
  6. Bolton A. E., Hunter W. M. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J. 1973 Jul;133(3):529–539. doi: 10.1042/bj1330529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Branca A. A., Baglioni C. Evidence that types I and II interferons have different receptors. Nature. 1981 Dec 24;294(5843):768–770. doi: 10.1038/294768a0. [DOI] [PubMed] [Google Scholar]
  8. Broeze R. J., Dougherty J. P., Pichon J., Jayaram B. M., Lengyel P. Studies with pure mouse Ehrlich ascites tumor interferons alpha and beta: patterns of induction of (2'-5') (A)n synthetase and of a double-stranded RNA-dependent protein kinase in mouse cells and human cells. J Interferon Res. 1981 Feb;1(2):191–202. doi: 10.1089/jir.1981.1.191. [DOI] [PubMed] [Google Scholar]
  9. Faltynek C. R., Branca A. A., McCandless S., Baglioni C. Characterization of an interferon receptor on human lymphoblastoid cells. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3269–3273. doi: 10.1073/pnas.80.11.3269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Farrell P. J., Broeze R. J., Lengyel P. Accumulation of an mRNA and protein in interferon-treated Ehrlich ascites tumour cells. Nature. 1979 Jun 7;279(5713):523–525. doi: 10.1038/279523a0. [DOI] [PubMed] [Google Scholar]
  11. Friedman R. M. Antiviral activity of interferons. Bacteriol Rev. 1977 Sep;41(3):543–567. doi: 10.1128/br.41.3.543-567.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gray P. W., Goeddel D. V. Structure of the human immune interferon gene. Nature. 1982 Aug 26;298(5877):859–863. doi: 10.1038/298859a0. [DOI] [PubMed] [Google Scholar]
  13. Gray P. W., Leung D. W., Pennica D., Yelverton E., Najarian R., Simonsen C. C., Derynck R., Sherwood P. J., Wallace D. M., Berger S. L. Expression of human immune interferon cDNA in E. coli and monkey cells. Nature. 1982 Feb 11;295(5849):503–508. doi: 10.1038/295503a0. [DOI] [PubMed] [Google Scholar]
  14. Gupta S. L., Rubin B. Y., Holmes S. L. Interferon action: induction of specific proteins in mouse and human cells by homologous interferons. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4817–4821. doi: 10.1073/pnas.76.10.4817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gupta S. L. Specific protein phosphorylation in interferon-treated uninfected and virus-infected mouse L929 cells: enhancement by double-stranded RNA. J Virol. 1979 Jan;29(1):301–311. doi: 10.1128/jvi.29.1.301-311.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hovanessian A. G., Meurs E., Aujean O., Vaquero C., Stefanos S., Falcoff E. Antiviral response and induction of specific proteins in cells treated with immune T (type II) interferon analogous to that from viral interferon (type I)-treated cells. Virology. 1980 Jul 15;104(1):195–204. doi: 10.1016/0042-6822(80)90377-3. [DOI] [PubMed] [Google Scholar]
  17. Joshi A. R., Sarkar F. H., Gupta S. L. Interferon receptors. Cross-linking of human leukocyte interferon alpha-2 to its receptor on human cells. J Biol Chem. 1982 Dec 10;257(23):13884–13887. [PubMed] [Google Scholar]
  18. Knight E., Jr, Korant B. D. Fibroblast interferon induces synthesis of four proteins in human fibroblast cells. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1824–1827. doi: 10.1073/pnas.76.4.1824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Le J., Prensky W., Yip Y. K., Chang Z., Hoffman T., Stevenson H. C., Balazs I., Sadlik J. R., Vilcek J. Activation of human monocyte cytotoxicity by natural and recombinant immune interferon. J Immunol. 1983 Dec;131(6):2821–2826. [PubMed] [Google Scholar]
  21. Lengyel P. Biochemistry of interferons and their actions. Annu Rev Biochem. 1982;51:251–282. doi: 10.1146/annurev.bi.51.070182.001343. [DOI] [PubMed] [Google Scholar]
  22. Mogensen K. E., Bandu M. T., Vignaux F., Aguet M., Gressner I. Binding of 125I-labelled human alpha interferon to human lymphoid cells. Int J Cancer. 1981 Nov 15;28(5):575–582. doi: 10.1002/ijc.2910280508. [DOI] [PubMed] [Google Scholar]
  23. Pestka S. The human interferons--from protein purification and sequence to cloning and expression in bacteria: before, between, and beyond. Arch Biochem Biophys. 1983 Feb 15;221(1):1–37. doi: 10.1016/0003-9861(83)90118-2. [DOI] [PubMed] [Google Scholar]
  24. Rubin B. Y., Gupta S. L. Differential efficacies of human type I and type II interferons as antiviral and antiproliferative agents. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5928–5932. doi: 10.1073/pnas.77.10.5928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sen G. C. Mechanism of interferon action: progress toward its understanding. Prog Nucleic Acid Res Mol Biol. 1982;27:105–156. doi: 10.1016/s0079-6603(08)60599-1. [DOI] [PubMed] [Google Scholar]
  26. Streuli M., Nagata S., Weissmann C. At least three human type alpha interferons: structure of alpha 2. Science. 1980 Sep 19;209(4463):1343–1347. doi: 10.1126/science.6158094. [DOI] [PubMed] [Google Scholar]
  27. Taya Y., Devos R., Tavernier J., Cheroutre H., Engler G., Fiers W. Cloning and structure of the human immune interferon-gamma chromosomal gene. EMBO J. 1982;1(8):953–958. doi: 10.1002/j.1460-2075.1982.tb01277.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Verhaegen-Lewalle M., Kuwata T., Zhang Z. X., DeClercq E., Cantell K., Content J. 2-5A synthetase activity induced by interferon alpha, beta, and gamma in human cell lines differing in their sensitivity to the anticellular and antiviral activities of these interferons. Virology. 1982 Mar;117(2):425–434. doi: 10.1016/0042-6822(82)90481-0. [DOI] [PubMed] [Google Scholar]
  29. Vilcek J. The importance of having gamma. Interferon. 1982;4:129–154. [PubMed] [Google Scholar]
  30. Weil J., Epstein C. J., Epstein L. B., Sedmak J. J., Sabran J. L., Grossberg S. E. A unique set of polypeptides is induced by gamma interferon in addition to those induced in common with alpha and beta interferons. Nature. 1983 Feb 3;301(5899):437–439. doi: 10.1038/301437a0. [DOI] [PubMed] [Google Scholar]
  31. Zoon K., Zur Nedden D., Arnheiter H. Specific binding of human alpha interferon to a high affinity cell surface binding site on bovine kidney cells. J Biol Chem. 1982 May 10;257(9):4695–4697. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES