Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Sep;81(17):5435–5439. doi: 10.1073/pnas.81.17.5435

Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract.

S L Hammond, R G Ham, M R Stampfer
PMCID: PMC391719  PMID: 6591199

Abstract

A serum-free medium with bovine pituitary extract as the only undefined supplement has been developed for long-term culture of human mammary epithelial cells. This medium supports serial subculture of normal cells for 10-20 passages (1:10 splits) without conditioning or special substrates, and it supports rapid clonal growth with plating efficiencies up to 35%. It consists of an optimized basal nutrient medium, MCDB 170, supplemented with insulin, hydrocortisone, epidermal growth factor, ethanolamine, phosphoethanolamine, and bovine pituitary extract. Replacement of pituitary extract with prostaglandin E1 and ovine prolactin yields a defined medium that supports rapid clonal growth and serial subculture for three or four passages. Cultures initiated in these media from normal reduction mammoplasty tissue remain diploid and maintain normal epithelial morphology, distribution of cell-associated fibronectin, expression of keratin fibrils, and a low level of expression of milk fat globule antigen. Large cell populations can now be generated and stored frozen, permitting multiple experiments over a period of time with cells from a single donor. These media greatly extend the range of experiments that can be performed both conveniently and reproducibly with cultured normal and tumor-derived human mammary epithelial cells.

Full text

PDF
5435

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials. Anal Biochem. 1976 Jan;70(1):241–250. doi: 10.1016/s0003-2697(76)80064-4. [DOI] [PubMed] [Google Scholar]
  2. Bettger W. J., Boyce S. T., Walthall B. J., Ham R. G. Rapid clonal growth and serial passage of human diploid fibroblasts in a lipid-enriched synthetic medium supplemented with epidermal growth factor, insulin, and dexamethasone. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5588–5592. doi: 10.1073/pnas.78.9.5588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Biran S., Horowitz A. T., Fuks Z., Vlodavsky I. High-density lipoprotein and extracellular matrix promotes growth and plating efficiency of normal human mammary epithelial cells in serum-free medium. Int J Cancer. 1983 May 15;31(5):557–566. doi: 10.1002/ijc.2910310506. [DOI] [PubMed] [Google Scholar]
  4. Bissell M. J., Hall H. G., Parry G. How does the extracellular matrix direct gene expression? J Theor Biol. 1982 Nov 7;99(1):31–68. doi: 10.1016/0022-5193(82)90388-5. [DOI] [PubMed] [Google Scholar]
  5. Boyce S. T., Ham R. G. Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J Invest Dermatol. 1983 Jul;81(1 Suppl):33s–40s. doi: 10.1111/1523-1747.ep12540422. [DOI] [PubMed] [Google Scholar]
  6. Chang S. E., Taylor-Papadimitriou J. Modulation of phenotype in cultures of human milk epithelial cells and its relation to the expression of a membrane antigen. Cell Differ. 1983 Mar;12(3):143–154. doi: 10.1016/0045-6039(83)90004-0. [DOI] [PubMed] [Google Scholar]
  7. Lechner J. F., Haugen A., McClendon I. A., Pettis E. W. Clonal growth of normal adult human bronchial epithelial cells in a serum-free medium. In Vitro. 1982 Jul;18(7):633–642. doi: 10.1007/BF02796396. [DOI] [PubMed] [Google Scholar]
  8. Lechner J. F., Kaighn M. E. Reduction of the calcium requirement of normal human epithelial cells by EGF. Exp Cell Res. 1979 Jul;121(2):432–435. doi: 10.1016/0014-4827(79)90027-2. [DOI] [PubMed] [Google Scholar]
  9. McKeehan W. L., Ham R. G. Methods for reducing the serum requirement for growth in vitro of nontransformed diploid fibroblasts. Dev Biol Stand. 1976 Dec 13;37:97–98. [PubMed] [Google Scholar]
  10. McKeehan W. L., McKeehan K. A. Epidermal growth factor modulates extracellular Ca2+ requirement for multiplication of normal human skin fibroblasts. Exp Cell Res. 1979 Oct 15;123(2):397–400. doi: 10.1016/0014-4827(79)90485-3. [DOI] [PubMed] [Google Scholar]
  11. McKeehan W. L., McKeehan K. A., Hammond S. L., Ham R. G. Improved medium for clonal growth of human diploid fibroblasts at low concentrations of serum protein. In Vitro. 1977 Jul;13(7):399–416. doi: 10.1007/BF02615100. [DOI] [PubMed] [Google Scholar]
  12. McKeehan W. L. The effect of temperature during trypsin treatment on viability and multiplication potential of single normal human and chicken fibroblasts. Cell Biol Int Rep. 1977 Jul;1(4):335–343. doi: 10.1016/0309-1651(77)90063-7. [DOI] [PubMed] [Google Scholar]
  13. Shipley G. D., Ham R. G. Improved medium and culture conditions for clonal growth with minimal serum protein and for enhanced serum-free survival of Swiss 3T3 cells. In Vitro. 1981 Aug;17(8):656–670. doi: 10.1007/BF02628401. [DOI] [PubMed] [Google Scholar]
  14. Smith H. S., Lan S., Ceriani R., Hackett A. J., Stampfer M. R. Clonal proliferation of cultured nonmalignant and malignant human breast epithelia. Cancer Res. 1981 Nov;41(11 Pt 1):4637–4643. [PubMed] [Google Scholar]
  15. Stampfer M. R., Bartholomew J. C., Smith H. S., Bartley J. C. Metabolism of benzo[a]pyrene by human mammary epithelial cells: toxicity and DNA adduct formation. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6251–6255. doi: 10.1073/pnas.78.10.6251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stampfer M. R. Cholera toxin stimulation of human mammary epithelial cells in culture. In Vitro. 1982 Jun;18(6):531–537. doi: 10.1007/BF02810076. [DOI] [PubMed] [Google Scholar]
  17. Stampfer M. R., Vlodavsky I., Smith H. S., Ford R., Becker F. F., Riggs J. Fibronectin production by human mammary cells. J Natl Cancer Inst. 1981 Aug;67(2):253–261. [PubMed] [Google Scholar]
  18. Stampfer M., Hallowes R. C., Hackett A. J. Growth of normal human mammary cells in culture. In Vitro. 1980 May;16(5):415–425. doi: 10.1007/BF02618365. [DOI] [PubMed] [Google Scholar]
  19. Suard Y. M., Haeuptle M. T., Farinon E., Kraehenbuhl J. P. Cell proliferation and milk protein gene expression in rabbit mammary cell cultures. J Cell Biol. 1983 May;96(5):1435–1442. doi: 10.1083/jcb.96.5.1435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Taylor-Papadimitriou J., Peterson J. A., Arklie J., Burchell J., Ceriani R. L., Bodmer W. F. Monoclonal antibodies to epithelium-specific components of the human milk fat globule membrane: production and reaction with cells in culture. Int J Cancer. 1981 Jul 15;28(1):17–21. doi: 10.1002/ijc.2910280104. [DOI] [PubMed] [Google Scholar]
  21. Tsao M. C., Walthall B. J., Ham R. G. Clonal growth of normal human epidermal keratinocytes in a defined medium. J Cell Physiol. 1982 Feb;110(2):219–229. doi: 10.1002/jcp.1041100217. [DOI] [PubMed] [Google Scholar]
  22. Wicha M. S., Lowrie G., Kohn E., Bagavandoss P., Mahn T. Extracellular matrix promotes mammary epithelial growth and differentiation in vitro. Proc Natl Acad Sci U S A. 1982 May;79(10):3213–3217. doi: 10.1073/pnas.79.10.3213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yang J., Larson L., Flynn D., Elias J., Nandi S. Serum-free primary culture of human normal mammary epithelial cells in collagen gel matrix. Cell Biol Int Rep. 1982 Oct;6(10):969–975. doi: 10.1016/0309-1651(82)90009-1. [DOI] [PubMed] [Google Scholar]
  24. Yang T. C., Stampfer M. R., Smith H. S. Response of cultured normal human mammary epithelial cells to X rays. Radiat Res. 1983 Dec;96(3):476–485. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES