Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Sep;81(17):5482–5483. doi: 10.1073/pnas.81.17.5482

“Hopeful monsters,” transposons, and Metazoan radiation

Douglas H Erwin 1, James W Valentine 1
PMCID: PMC391729  PMID: 16593511

Abstract

The appearance of many novel morphologies, frequently expressed taxonomically as new phyla, classes, or orders, occurs with such rapidity in evolutionary time that microevolutionary substitutions involving structural genes seem an implausible mechanism. It has been suggested that such novelties are produced by changes in developmental and regulatory structures and patterns rather than by an accumulation of single structural gene changes. The horizontal transmission of genetic material via RNA-based viruses between members of a population may rapidly create intrafertile sub-populations that differ markedly from their parents and form the basis of new morphological types, avoiding the usual fitness problems associated with “hopeful monsters.”

Keywords: origin of novelty, infectious mutation, Phanerozoic trends in higher taxa

Full text

PDF
5482

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Britten R. J., Davidson E. H. Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Q Rev Biol. 1971 Jun;46(2):111–138. doi: 10.1086/406830. [DOI] [PubMed] [Google Scholar]
  2. Busslinger M., Rusconi S., Birnstiel M. L. An unusual evolutionary behaviour of a sea urchin histone gene cluster. EMBO J. 1982;1(1):27–33. doi: 10.1002/j.1460-2075.1982.tb01119.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cooper G. M. Cellular transforming genes. Science. 1982 Aug 27;217(4562):801–806. doi: 10.1126/science.6285471. [DOI] [PubMed] [Google Scholar]
  4. Dover G. Molecular drive: a cohesive mode of species evolution. Nature. 1982 Sep 9;299(5879):111–117. doi: 10.1038/299111a0. [DOI] [PubMed] [Google Scholar]
  5. Duesberg P. H. Retroviral transforming genes in normal cells? Nature. 1983 Jul 21;304(5923):219–226. doi: 10.1038/304219a0. [DOI] [PubMed] [Google Scholar]
  6. Holland J., Spindler K., Horodyski F., Grabau E., Nichol S., VandePol S. Rapid evolution of RNA genomes. Science. 1982 Mar 26;215(4540):1577–1585. doi: 10.1126/science.7041255. [DOI] [PubMed] [Google Scholar]
  7. Jaenisch R. Endogenous retroviruses. Cell. 1983 Jan;32(1):5–6. doi: 10.1016/0092-8674(83)90491-9. [DOI] [PubMed] [Google Scholar]
  8. Nevers P., Saedler H. Transposable genetic elements as agents of gene instability and chromosomal rearrangements. Nature. 1977 Jul 14;268(5616):109–115. doi: 10.1038/268109a0. [DOI] [PubMed] [Google Scholar]
  9. Olson E. C. The problem of missing links: today and yesterday. Q Rev Biol. 1981 Dec;56(4):405–442. doi: 10.1086/412432. [DOI] [PubMed] [Google Scholar]
  10. Thompson J. N., Jr, Woodruff R. C. Mutator genes--pacemakers of evolution. Nature. 1978 Jul 27;274(5669):317–321. doi: 10.1038/274317a0. [DOI] [PubMed] [Google Scholar]
  11. Valentine J. W., Campbell C. A. Genetic regulation and the fossil record. Am Sci. 1975 Nov-Dec;63(6):673–680. [PubMed] [Google Scholar]
  12. Varmus H. E. Form and function of retroviral proviruses. Science. 1982 May 21;216(4548):812–820. doi: 10.1126/science.6177038. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES