Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jun 11;93(12):5996–6001. doi: 10.1073/pnas.93.12.5996

Membrane healing and restoration of contractility after mechanical injury in isolated skeletal muscle fibers of the frog.

H Gonzalez-Serratos 1, M Rozycka 1, R Cordoba-Rodriguez 1, A Ortega 1
PMCID: PMC39177  PMID: 8650208

Abstract

In single isolated skeletal muscle fibers of the frog, we studied (i) the recovery from large sarcolemmal mechanical injuries of the response to electric stimulation and (ii) the integrity of the sarcolemma under the light microscope. In Ringer's solution, the damaged cells stopped contracting and deteriorated completely within 1 hr. In the presence of phosphatidylcholine (0.025 g/ml in Ringer's solution), the injured cells initially responded with local twitches. Within 0.5 hr, contractility and membrane integrity started to recover and both were back to control levels within 3 hr. When these cells were placed back in normal Ringer's solution, they remained viable and active for several hours. Our results suggest that phosphatidylcholine can protect muscle fibers from the effects of sarcolemmal injury.

Full text

PDF
5996

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blinks J. R., Rüdel R., Taylor S. R. Calcium transients in isolated amphibian skeletal muscle fibres: detection with aequorin. J Physiol. 1978 Apr;277:291–323. doi: 10.1113/jphysiol.1978.sp012273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blioch Z. L., Glagoleva I. M., Liberman E. A., Nenashev V. A. A study of the mechanism of quantal transmitter release at a chemical synapse. J Physiol. 1968 Nov;199(1):11–35. doi: 10.1113/jphysiol.1968.sp008637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cantoni L., Curri S. B., Andreuzzi P., Rocchetti P. Plasma and red blood cell phospholipids in chronic liver diseases. Clin Chim Acta. 1975 May 1;60(3):405–408. doi: 10.1016/0009-8981(75)90086-8. [DOI] [PubMed] [Google Scholar]
  4. De Mello W. C. Membrane sealing in frog skeletal-muscle fibers. Proc Natl Acad Sci U S A. 1973 Apr;70(4):982–984. doi: 10.1073/pnas.70.4.982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hamlyn J. M., Schenden J. A., Zyren J., Baczynskyj L. Purification and characterization of digitalislike factors from human plasma. Hypertension. 1987 Nov;10(5 Pt 2):I71–I77. doi: 10.1161/01.hyp.10.5_pt_2.i71. [DOI] [PubMed] [Google Scholar]
  6. Konishi M., Hollingworth S., Harkins A. B., Baylor S. M. Myoplasmic calcium transients in intact frog skeletal muscle fibers monitored with the fluorescent indicator furaptra. J Gen Physiol. 1991 Feb;97(2):271–301. doi: 10.1085/jgp.97.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. ROTHSCHUH K. E. Uber den funktionellen Aufbau des Herzens aus elektrophysiologischen Elementen und über den Mechanismus der Erregungsleitung im Herzen. Pflugers Arch. 1951;253(3):238–251. doi: 10.1007/BF00363391. [DOI] [PubMed] [Google Scholar]
  8. Rapoport S. I. Mechanical properties of the sarcolemma and myoplasm in frog muscle as a function of sarcomere length. J Gen Physiol. 1972 May;59(5):559–585. doi: 10.1085/jgp.59.5.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rapoport S. I. The anisotropic elastic properties of the sarcolemma of the frog semitendinosus muscle fiber. Biophys J. 1973 Jan;13(1):14–36. doi: 10.1016/S0006-3495(73)85967-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rosemblatt M., Hidalgo C., Vergara C., Ikemoto N. Immunological and biochemical properties of transverse tubule membranes isolated from rabbit skeletal muscle. J Biol Chem. 1981 Aug 10;256(15):8140–8148. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES