Abstract
Previously, we have reported that enkephalins, cholecystokinin, and heavy metals show roughly parallel distributional patterns in the hippocampus. A substantial body of evidence indicates that cholecystokinin-octapeptide (CCK-8) and enkephalins act as neurotransmitters. A CCK-8 degrading enzyme was recently detected in brain synaptosomes. Its activity depended on free thiol groups and the presence of a heavy metal. Since the heavy metal-containing neuropil is closely related to CCK-immunoreactive nerve terminals, we have investigated the effect of metal chelation on CCK components in the rat hippocampus. In vivo treatment of rats with a single dose of the chelating agent diethyldithiocarbamate caused a reversible chelation of heavy metals in the hippocampus. This effect was paralleled by a 3-fold increase in hippocampal content of CCK-8 and a smaller increase in the intermediate forms of CCK (CCK-58, CCK-39, CCK-33). Diethyldithiocarbamate also decreased the spontaneous motility and aggressiveness of the rats. These data show reversible changes of neuronal CCK processing by a drug, and hence they provide additional evidence that CCK is involved in the regulation of neuronal activities.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bloch B., Ling N., Benoit R., Wehrenberg W. B., Guillemin R. Specific depletion of immunoreactive growth hormone-releasing factor by monosodium glutamate in rat median eminence. Nature. 1984 Jan 19;307(5948):272–273. doi: 10.1038/307272a0. [DOI] [PubMed] [Google Scholar]
- Corrigall W. A. Opiates and the hippocampus: a review of the functional and morphological evidence. Pharmacol Biochem Behav. 1983 Feb;18(2):255–262. doi: 10.1016/0091-3057(83)90371-4. [DOI] [PubMed] [Google Scholar]
- Danscher G., Fjerdingstad E. J., Fjerdingstad E., Fredens K. Heavy metal content in subdivisions of the rat hippocampus (zinc, lead and copper). Brain Res. 1976 Aug 13;112(2):442–446. doi: 10.1016/0006-8993(76)90302-4. [DOI] [PubMed] [Google Scholar]
- Danscher G., Haug F. M., Fredens K. Effect of diethyldithiocarbamate (DEDTC) on sulphide silver stained boutons. Reversible blocking of Timm's sulphide silver stain for "heavy" metals in DEDTC treated rats (light microscopy). Exp Brain Res. 1973 Mar 19;16(5):521–532. doi: 10.1007/BF00234478. [DOI] [PubMed] [Google Scholar]
- Danscher G. Histochemical demonstration of heavy metals. A revised version of the sulphide silver method suitable for both light and electronmicroscopy. Histochemistry. 1981;71(1):1–16. doi: 10.1007/BF00592566. [DOI] [PubMed] [Google Scholar]
- De La Baume S., Patey G., Schwartz J. C. Subcellular distribution of enkephalin-dipeptidyl carboxypeptidase (enkephalinase) in rat brain. Neuroscience. 1981;6(3):315–321. doi: 10.1016/0306-4522(81)90125-1. [DOI] [PubMed] [Google Scholar]
- Deschodt-Lanckman M., Bui N. D., Noyer M., Christophe J. Degradation of cholecystokinin-like peptides by a crude rat brain synaptosomal fraction: a study by high pressure liquid chromatography. Regul Pept. 1981 Apr;2(1):15–30. doi: 10.1016/0167-0115(81)90062-8. [DOI] [PubMed] [Google Scholar]
- Dockray G. J. Immunochemical evidence of cholecystokinin-like peptides in brain. Nature. 1976 Dec 9;264(5586):568–570. doi: 10.1038/264568a0. [DOI] [PubMed] [Google Scholar]
- Dodd J., Kelly J. S. The actions of cholecystokinin and related peptides on pyramidal neurones of the mammalian hippocampus. Brain Res. 1981 Feb 2;205(2):337–350. doi: 10.1016/0006-8993(81)90344-9. [DOI] [PubMed] [Google Scholar]
- Fjerdingstad E., Danscher G., Fjerdingstad E. J. Zinc content in hippocampus and whole brain of normal rats. Brain Res. 1974 Oct 18;79(2):338–342. doi: 10.1016/0006-8993(74)90429-6. [DOI] [PubMed] [Google Scholar]
- Fredens K., Stengaard-Pedersen K., Larsson L. I. Localization of enkephalin and cholecystokinin immunoreactivities in the perforant path terminal fields of the rat hippocampal formation. Brain Res. 1984 Jun 25;304(2):255–263. doi: 10.1016/0006-8993(84)90328-7. [DOI] [PubMed] [Google Scholar]
- Goltermann N. R., Rehfeld J. F., Petersen H. R. Concentration and in vivo synthesis of cholecystokinin in subcortical regions of the rat brain. J Neurochem. 1980 Aug;35(2):479–483. doi: 10.1111/j.1471-4159.1980.tb06290.x. [DOI] [PubMed] [Google Scholar]
- Goltermann N. R., Stengaard-Pedersen K., Rehfeld J. F., Christensen N. J. Newly synthesized cholecystokinin in subcellular fractions of the rat brain. J Neurochem. 1981 Mar;36(3):959–965. doi: 10.1111/j.1471-4159.1981.tb01687.x. [DOI] [PubMed] [Google Scholar]
- Greenwood R. S., Godar S. E., Reaves T. A., Jr, Hayward J. N. Cholecystokinin in hippocampal pathways. J Comp Neurol. 1981 Dec 10;203(3):335–350. doi: 10.1002/cne.902030303. [DOI] [PubMed] [Google Scholar]
- Handelmann G., Meyer D. K., Beinfeld M. C., Oertel W. H. CCK-containing terminals in the hippocampus are derived from intrinsic neurons: an immunohistochemical and radioimmunological study. Brain Res. 1981 Nov 9;224(1):180–184. doi: 10.1016/0006-8993(81)91130-6. [DOI] [PubMed] [Google Scholar]
- Haug F. M. Electron microscopical localization of the zinc in hippocampal mossy fibre synapses by a modified sulfide silver procedure. Histochemie. 1967;8(4):355–368. doi: 10.1007/BF00401978. [DOI] [PubMed] [Google Scholar]
- Haug F. M. Light microscopical mapping of the hippocampal region, the pyriform cortex and the corticomedial amygdaloid nuclei of the rat with Timm's sulphide silver method. I. Area dentata, hippocampus and subiculum. Z Anat Entwicklungsgesch. 1974;145(1):1–27. doi: 10.1007/BF00519123. [DOI] [PubMed] [Google Scholar]
- Hökfelt T., Rehfeld J. F., Skirboll L., Ivemark B., Goldstein M., Markey K. Evidence for coexistence of dopamine and CCK in meso-limbic neurones. Nature. 1980 Jun 12;285(5765):476–478. doi: 10.1038/285476a0. [DOI] [PubMed] [Google Scholar]
- Ibata Y., Otsuka N. Electron microscopic demonstration of zinc in the hippocampal formation using Timm's sulfide silver technique. J Histochem Cytochem. 1969 Mar;17(3):171–175. doi: 10.1177/17.3.171. [DOI] [PubMed] [Google Scholar]
- Innis R. B., Corrêa F. M., Uhl G. R., Schneider B., Snyder S. H. Cholecystokinin octapeptide-like immunoreactivity: histochemical localization in rat brain. Proc Natl Acad Sci U S A. 1979 Jan;76(1):521–525. doi: 10.1073/pnas.76.1.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Innis R. B., Snyder S. H. Distinct cholecystokinin receptors in brain and pancreas. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6917–6921. doi: 10.1073/pnas.77.11.6917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobsen E. Neues über die theoretische Grundlage der Disulfiramwirkung. (Antabus) Med Welt. 1967 Sep 16;37:2169–2173. [PubMed] [Google Scholar]
- Köhler C., Chan-Palay V. The distribution of cholecystokinin-like immunoreactive neurons and nerve terminals in the retrohippocampal region in the rat and guinea pig. J Comp Neurol. 1982 Sep 10;210(2):136–146. doi: 10.1002/cne.902100204. [DOI] [PubMed] [Google Scholar]
- Larsson L. I. Peptide immunocytochemistry. Prog Histochem Cytochem. 1981;13(4):1–85. [PubMed] [Google Scholar]
- Larsson L. I., Rehfeld J. F. Characterization of antral gastrin cells with region-specific antisera. J Histochem Cytochem. 1977 Dec;25(12):1317–1321. doi: 10.1177/25.12.925341. [DOI] [PubMed] [Google Scholar]
- Larsson L. I., Rehfeld J. F. Localization and molecular heterogeneity of cholecystokinin in the central and peripheral nervous system. Brain Res. 1979 Apr 13;165(2):201–218. doi: 10.1016/0006-8993(79)90554-7. [DOI] [PubMed] [Google Scholar]
- Lorén I., Alumets J., Håkanson R., Sundler F. Distribution of gastrin and CCK-like peptides in rat brain. An immunocytochemical study. Histochemistry. 1979 Feb 21;59(4):249–257. doi: 10.1007/BF00689607. [DOI] [PubMed] [Google Scholar]
- Malfroy B., Swerts J. P., Guyon A., Roques B. P., Schwartz J. C. High-affinity enkephalin-degrading peptidase in brain is increased after morphine. Nature. 1978 Nov 30;276(5687):523–526. doi: 10.1038/276523a0. [DOI] [PubMed] [Google Scholar]
- Malfroy B., Swerts J. P., Llorens C., Schwartz J. C. Regional distribution of a high-affinity enkephalin-degrading peptidase ('enkephalinase') and effects of lesions suggest localization in the vicinity of opiate receptors in brain. Neurosci Lett. 1979 Mar;11(3):329–334. doi: 10.1016/0304-3940(79)90017-x. [DOI] [PubMed] [Google Scholar]
- Meek J. L., Iadarola M. J., Giorgi O. Cholecystokinin turnover in brain. Brain Res. 1983 Oct 16;276(2):375–378. doi: 10.1016/0006-8993(83)90751-5. [DOI] [PubMed] [Google Scholar]
- Musacchio J. M., Goldstein M., Anagnoste B., Poch G., Kopin I. J. Inhibition of dopamine-beta-hydroxylase by disulfiram in vivo. J Pharmacol Exp Ther. 1966 Apr;152(1):56–61. [PubMed] [Google Scholar]
- Neims A. H., Coffey D. S., Hellerman L. Interaction between tetraethylthiuram disulfide and the sulfhydryl groups of D-amino acid oxidase and of hemoglobin. J Biol Chem. 1966 Dec 25;241(24):5941–5948. [PubMed] [Google Scholar]
- Pinget M., Straus E., Yalow R. S. Localization of cholecystokinin-like immunoreactivity in isolated nerve terminals. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6324–6326. doi: 10.1073/pnas.75.12.6324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pinget M., Straus E., Yalow R. S. Release of cholecystokinin peptides from a synaptosome-enriched fraction of rat cerebral cortex. Life Sci. 1979 Jul 23;25(4):339–342. doi: 10.1016/0024-3205(79)90264-9. [DOI] [PubMed] [Google Scholar]
- Rappay G., Nagy I., Makara G. B., Horváth G., Kárteszi M., Bácsy E., Stark E. Inhibition of growth hormone and prolactin secretion by a serine proteinase inhibitor. Life Sci. 1984 Jan 23;34(4):337–344. doi: 10.1016/0024-3205(84)90621-0. [DOI] [PubMed] [Google Scholar]
- Rehfeld J. F. Cholecystokinin. Clin Gastroenterol. 1980 Sep;9(3):593–607. [PubMed] [Google Scholar]
- Rehfeld J. F. Immunochemical studies on cholecystokinin. I. Development of sequence-specific radioimmunoassays for porcine triacontatriapeptide cholecystokinin. J Biol Chem. 1978 Jun 10;253(11):4016–4021. [PubMed] [Google Scholar]
- Rehfeld J. F. Immunochemical studies on cholecystokinin. II. Distribution and molecular heterogeneity in the central nervous system and small intestine of man and hog. J Biol Chem. 1978 Jun 10;253(11):4022–4030. [PubMed] [Google Scholar]
- STROMME J. H. Inhibition of hexokinase by disulfiram and diethyldithiocarbamate. Biochem Pharmacol. 1963 Feb;12:157–166. doi: 10.1016/0006-2952(63)90180-1. [DOI] [PubMed] [Google Scholar]
- STRUME J. H. METABOLISM OF DISULFIRAM AND DIETHYLDITHIOCARBAMATE IN RATS WITH DEMONSTRATION OF AN IN VIVO ETHANOL-INDUCED INHIBITION OF THE GLUCURONIC ACID CONJUGATION OF THE THIOL. Biochem Pharmacol. 1965 Apr;14:393–410. doi: 10.1016/0006-2952(65)90213-3. [DOI] [PubMed] [Google Scholar]
- Saito A., Sankaran H., Goldfine I. D., Williams J. A. Cholecystokinin receptors in the brain: characterization and distribution. Science. 1980 Jun 6;208(4448):1155–1156. doi: 10.1126/science.6246582. [DOI] [PubMed] [Google Scholar]
- Schou M., Holt E. Zinc concentrations in human plasma and in rat plasma and tissues during lithium administration. Acta Pharmacol Toxicol (Copenh) 1981 Oct;49(4):298–300. doi: 10.1111/j.1600-0773.1981.tb00909.x. [DOI] [PubMed] [Google Scholar]
- Smejda Haug F. M. Heavy metals in the brain. A light microscope study of the rat with Timm's sulphide silver method. Methodological considerations and cytological and regional staining patterns. Adv Anat Embryol Cell Biol. 1973;47(4):1–71. [PubMed] [Google Scholar]
- Stengaard-Pedersen K., Fredens K., Larsson L. I. Comparative localization of enkephalin and cholecystokinin immunoreactivities and heavy metals in the hippocampus. Brain Res. 1983 Aug 22;273(1):81–96. doi: 10.1016/0006-8993(83)91097-1. [DOI] [PubMed] [Google Scholar]
- Stengaard-Pedersen K., Fredens K., Larsson L. I. Enkephalin and zinc in the hippocampal mossy fiber System. Brain Res. 1981 May 11;212(1):230–233. doi: 10.1016/0006-8993(81)90058-5. [DOI] [PubMed] [Google Scholar]
- Stengaard-Pedersen K., Fredens K., Larsson L. I. Inhibition of opiate receptor binding by zinc ions: possible physiological importance in the hippocampus. Peptides. 1981;2 (Suppl 1):27–35. doi: 10.1016/0196-9781(81)90052-8. [DOI] [PubMed] [Google Scholar]
- Stengaard-Pedersen K. Inhibition of enkephalin binding to opiate receptors by zinc ions: possible physiological importance in the brain. Acta Pharmacol Toxicol (Copenh) 1982 Mar;50(3):213–220. doi: 10.1111/j.1600-0773.1982.tb00964.x. [DOI] [PubMed] [Google Scholar]
- Stengaard-Pedersen K., Larsson L. I. Comparative immunocytochemical localization of putative opioid ligands in the central nervous system. Histochemistry. 1981;73(1):89–114. doi: 10.1007/BF00493136. [DOI] [PubMed] [Google Scholar]
- Stengaard-Pedersen K., Larsson L. I. Localization and opiate receptor binding of enkephalin, CCK and ACTH/beta-endorphin in the rat central nervous system. Peptides. 1981;2 (Suppl 1):3–19. doi: 10.1016/0196-9781(81)90050-4. [DOI] [PubMed] [Google Scholar]
- Sullivan S., Akil H., Blacker D., Barchas J. D. Enkephalinase: selective inhibitors and partial characterization. Peptides. 1980 Spring;1(1):31–35. doi: 10.1016/0196-9781(80)90032-7. [DOI] [PubMed] [Google Scholar]
- TIMM F. Zur Histochemie der Schwermetalle; das Sulfid-Silberverfahren. Dtsch Z Gesamte Gerichtl Med. 1958;46(5):706–711. [PubMed] [Google Scholar]
- Vanderhaeghen J. J., Lotstra F., De Mey J., Gilles C. Immunohistochemical localization of cholecystokinin- and gastrin-like peptides in the brain and hypophysis of the rat. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1190–1194. doi: 10.1073/pnas.77.2.1190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zarbin M. A., Innis R. B., Wamsley J. K., Snyder S. H., Kuhar M. J. Autoradiographic localization of cholecystokinin receptors in rodent brain. J Neurosci. 1983 Apr;3(4):877–906. doi: 10.1523/JNEUROSCI.03-04-00877.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]







