Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Oct;81(19):5946–5950. doi: 10.1073/pnas.81.19.5946

Specific membrane receptors for atrial natriuretic factor in renal and vascular tissues.

M A Napier, R L Vandlen, G Albers-Schönberg, R F Nutt, S Brady, T Lyle, R Winquist, E P Faison, L A Heinel, E H Blaine
PMCID: PMC391835  PMID: 6091122

Abstract

Membranes from rabbit aorta and from rabbit and rat kidney cortex possess high-affinity (Kd = 10(-10) M) specific binding sites for atrial natriuretic factor (ANF). Similar high-affinity sites are present in an established cell line from pig kidney, LLC-PK1. Results of fractionation studies indicate that the receptors are localized in the plasma membrane of these tissues. The binding is time-dependent and saturable. An excellent quantitative correlation was found between the affinity of synthetic ANF and analogs of intermediate activity to aorta membranes and the half-maximal concentration needed for relaxation of rabbit aorta rings contracted by addition of serotonin. Furthermore, the binding affinity of the receptor in kidney membranes is consistent with the concentration required for in vivo natriuresis in the rat. Biologically inactive synthetic ANF fragments and other peptide hormones such as angiotensin II and vasopressin do not significantly inhibit binding. These data suggest that the receptors for ANF in vascular and renal tissues are responsible for mediating the physiological actions of this peptide in these target tissues.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ausiello D. A., Hall D. H., Dayer J. M. Modulation of cyclic AMP-dependent protein kinase by vasopressin and calcitonin in cultured porcine renal LLC-PK1 cells. Biochem J. 1980 Mar 15;186(3):773–780. doi: 10.1042/bj1860773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Briggs J. P., Steipe B., Schubert G., Schnermann J. Micropuncture studies of the renal effects of atrial natriuretic substance. Pflugers Arch. 1982 Dec;395(4):271–276. doi: 10.1007/BF00580789. [DOI] [PubMed] [Google Scholar]
  3. Bruns R. F., Lawson-Wendling K., Pugsley T. A. A rapid filtration assay for soluble receptors using polyethylenimine-treated filters. Anal Biochem. 1983 Jul 1;132(1):74–81. doi: 10.1016/0003-2697(83)90427-x. [DOI] [PubMed] [Google Scholar]
  4. Currie M. G., Geller D. M., Cole B. R., Boylan J. G., YuSheng W., Holmberg S. W., Needleman P. Bioactive cardiac substances: potent vasorelaxant activity in mammalian atria. Science. 1983 Jul 1;221(4605):71–73. doi: 10.1126/science.6857267. [DOI] [PubMed] [Google Scholar]
  5. Currie M. G., Geller D. M., Cole B. R., Siegel N. R., Fok K. F., Adams S. P., Eubanks S. R., Galluppi G. R., Needleman P. Purification and sequence analysis of bioactive atrial peptides (atriopeptins). Science. 1984 Jan 6;223(4631):67–69. doi: 10.1126/science.6419347. [DOI] [PubMed] [Google Scholar]
  6. De Bold A. J. Heart atria granularity effects of changes in water-electrolyte balance. Proc Soc Exp Biol Med. 1979 Sep;161(4):508–511. doi: 10.3181/00379727-161-40584. [DOI] [PubMed] [Google Scholar]
  7. Flynn T. G., de Bold M. L., de Bold A. J. The amino acid sequence of an atrial peptide with potent diuretic and natriuretic properties. Biochem Biophys Res Commun. 1983 Dec 28;117(3):859–865. doi: 10.1016/0006-291x(83)91675-3. [DOI] [PubMed] [Google Scholar]
  8. Garcia R., Cantin M., Thibault G., Ong H., Genest J. Relationship of specific granules to the natriuretic and diuretic activity of rat atria. Experientia. 1982 Sep 15;38(9):1071–1073. doi: 10.1007/BF01955373. [DOI] [PubMed] [Google Scholar]
  9. Garcia R., Thibault G., Cantin M., Genest J. Effect of a purified atrial natriuretic factor on rat and rabbit vascular strips and vascular beds. Am J Physiol. 1984 Jul;247(1 Pt 2):R34–R39. doi: 10.1152/ajpregu.1984.247.1.R34. [DOI] [PubMed] [Google Scholar]
  10. Goetz K. L., Bond G. C., Bloxham D. D. Atrial receptors and renal function. Physiol Rev. 1975 Apr;55(2):157–205. doi: 10.1152/physrev.1975.55.2.157. [DOI] [PubMed] [Google Scholar]
  11. Goldring S. R., Dayer J. M., Ausiello D. A., Krane S. M. A cell strain cultured from porcine kidney increases cyclic AMP content upon exposure to calcitonin or vasopressin. Biochem Biophys Res Commun. 1978 Jul 28;83(2):434–440. doi: 10.1016/0006-291x(78)91009-4. [DOI] [PubMed] [Google Scholar]
  12. Hull R. N., Cherry W. R., Weaver G. W. The origin and characteristics of a pig kidney cell strain, LLC-PK. In Vitro. 1976 Oct;12(10):670–677. doi: 10.1007/BF02797469. [DOI] [PubMed] [Google Scholar]
  13. JAMIESON J. D., PALADE G. E. SPECIFIC GRANULES IN ATRIAL MUSCLE CELLS. J Cell Biol. 1964 Oct;23:151–172. doi: 10.1083/jcb.23.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kangawa K., Matsuo H. Purification and complete amino acid sequence of alpha-human atrial natriuretic polypeptide (alpha-hANP). Biochem Biophys Res Commun. 1984 Jan 13;118(1):131–139. doi: 10.1016/0006-291x(84)91077-5. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  17. Napier M. A., Dewey R. S., Albers-Schönberg G., Bennett C. D., Rodkey J. A., Marsh E. A., Whinnery M., Seymour A. A., Blaine E. H. Isolation and sequence determination of peptide components of atrial natriuretic factor. Biochem Biophys Res Commun. 1984 May 16;120(3):981–988. doi: 10.1016/s0006-291x(84)80203-x. [DOI] [PubMed] [Google Scholar]
  18. Perantoni A., Berman J. J. Properties of Wilms' tumor line (TuWi) and pig kidney line (LLC-PK1) typical of normal kidney tubular epithelium. In Vitro. 1979 Jun;15(6):446–454. doi: 10.1007/BF02618414. [DOI] [PubMed] [Google Scholar]
  19. Pollock D. M., Mullins M. M., Banks R. O. Failure of atrial myocardial extract to inhibit renal Na+, K+-ATPase. Ren Physiol. 1983;6(6):295–299. doi: 10.1159/000172915. [DOI] [PubMed] [Google Scholar]
  20. Seidah N. G., Lazure C., Chrétien M., Thibault G., Garcia R., Cantin M., Genest J., Nutt R. F., Brady S. F., Lyle T. A. Amino acid sequence of homologous rat atrial peptides: natriuretic activity of native and synthetic forms. Proc Natl Acad Sci U S A. 1984 May;81(9):2640–2644. doi: 10.1073/pnas.81.9.2640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sepúlveda F. V., Pearson J. D. Characterization of neutral amino acid uptake by cultured epithelial cells from pig kidney. J Cell Physiol. 1982 Aug;112(2):182–188. doi: 10.1002/jcp.1041120205. [DOI] [PubMed] [Google Scholar]
  22. Sonnenberg H., Cupples W. A., de Bold A. J., Veress A. T. Intrarenal localization of the natriuretic effect of cardiac atrial extract. Can J Physiol Pharmacol. 1982 Sep;60(9):1149–1152. doi: 10.1139/y82-166. [DOI] [PubMed] [Google Scholar]
  23. Vandlen R. L., Sarcione S. L., Telakowski C. A. Purification and characterization of plasma membrane fractions from cultured pituitary glands. Biochim Biophys Acta. 1981 Dec 21;649(3):595–607. doi: 10.1016/0005-2736(81)90164-4. [DOI] [PubMed] [Google Scholar]
  24. de Bold A. J., Borenstein H. B., Veress A. T., Sonnenberg H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci. 1981 Jan 5;28(1):89–94. doi: 10.1016/0024-3205(81)90370-2. [DOI] [PubMed] [Google Scholar]
  25. de Bold A. J. Morphometric assessment of granulation in rat atrial cardiocytes: effect of age. J Mol Cell Cardiol. 1978 Aug;10(8):717–724. doi: 10.1016/0022-2828(78)90406-6. [DOI] [PubMed] [Google Scholar]
  26. de Bold A. J. Tissue fractionation studies on the relationship between an atrial natriuretic factor and specific atrial granules. Can J Physiol Pharmacol. 1982 Mar;60(3):324–330. doi: 10.1139/y82-045. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES