Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Oct;81(19):5985–5988. doi: 10.1073/pnas.81.19.5985

Variants of the cell recognition site of fibronectin that retain attachment-promoting activity.

M D Pierschbacher, E Ruoslahti
PMCID: PMC391843  PMID: 6237366

Abstract

A tetrapeptide sequence, Arg-Gly-Asp-Ser, is the minimal structure recognized by cells in the large, adhesive glycoprotein fibronectin. We now have defined the structural requirements for this cell recognition site by testing several synthetic variants of the active tetrapeptide sequence. The conservative substitutions of lysine for arginine, alanine for glycine, or glutamic acid for aspartic acid each resulted in abrogation of the cell attachment-promoting activity characteristic of the natural sequence. However, in the position of the serine residue, some alterations were compatible with activity. Assay of peptides containing the structure Arg-Gly-Asp-X (where X = another amino acid residue) showed that an Arg-Gly-Asp-Val sequence predicted to be present in some, but not all, fibronectin molecules as a result of alternative RNA splicings could potentially create a second cell attachment site in those fibronectin polypeptide chains carrying that sequence. Other proteins with potentially active Arg-Gly-Asp-X sequences include several proteins that are known to interact with the cell surface. Among these are various types of collagens, thrombin, and discoidin, a slime-mold protein that may be involved in cell aggregation. The result presented here show that the arginine, glycine, and aspartic acid residues are absolutely required for the cell recognition, and that the surrounding amino acids may play a role in the expression of cell attachment activity in fibronectin and other proteins having this sequence. We suggest, based on these data, that this recognition mechanism may be common to a number of biological systems.

Full text

PDF
5985

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alitalo K., Vaheri A. Pericellular matrix in malignant transformation. Adv Cancer Res. 1982;37:111–158. doi: 10.1016/s0065-230x(08)60883-0. [DOI] [PubMed] [Google Scholar]
  2. Bernard M. P., Myers J. C., Chu M. L., Ramirez F., Eikenberry E. F., Prockop D. J. Structure of a cDNA for the pro alpha 2 chain of human type I procollagen. Comparison with chick cDNA for pro alpha 2(I) identifies structurally conserved features of the protein and the gene. Biochemistry. 1983 Mar 1;22(5):1139–1145. doi: 10.1021/bi00274a023. [DOI] [PubMed] [Google Scholar]
  3. Bishop D. H., Huddleston J. A., Brownlee G. G. The complete sequence of RNA segment 2 of influenza A/NT/60/68 P1 protein. Nucleic Acids Res. 1982 Feb 25;10(4):1335–1343. doi: 10.1093/nar/10.4.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bitar K. G., Perez-Aranda A., Bradshaw R. A. Amino acid sequence of L-3-hydroxyacyl CoA dehydrogenase from pig heart muscle. FEBS Lett. 1980 Jul 28;116(2):196–198. doi: 10.1016/0014-5793(80)80642-9. [DOI] [PubMed] [Google Scholar]
  5. Briles E. B., Haskew N. B. Isolation of cloned variants of a rat hepatoma cell line with altered attachment to collagen, but normal attachment to fibronectin. Exp Cell Res. 1982 Apr;138(2):436–441. doi: 10.1016/0014-4827(82)90194-x. [DOI] [PubMed] [Google Scholar]
  6. Butler W. T., Miller E. J., Finch J. E., Jr The covalent structure of cartilage collagen. Amino acid sequence of the NH2-terminal helical portion of the alpha 1 (II) chain. Biochemistry. 1976 Jul 13;15(14):3000–3006. doi: 10.1021/bi00659a010. [DOI] [PubMed] [Google Scholar]
  7. Chang C. M., Reitherman R. W., Rosen S. D., Barondes S. H. Cell surface location of discoidin, a developmentally regulated carbohydrate-binding protein from Dictyostelium discoideum. Exp Cell Res. 1975 Oct 1;95(1):136–142. doi: 10.1016/0014-4827(75)90618-7. [DOI] [PubMed] [Google Scholar]
  8. Clément J. M., Hofnung M. Gene sequence of the lambda receptor, an outer membrane protein of E. coli K12. Cell. 1981 Dec;27(3 Pt 2):507–514. doi: 10.1016/0092-8674(81)90392-5. [DOI] [PubMed] [Google Scholar]
  9. Engvall E., Ruoslahti E. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int J Cancer. 1977 Jul 15;20(1):1–5. doi: 10.1002/ijc.2910200102. [DOI] [PubMed] [Google Scholar]
  10. Geltosky J. E., Weseman J., Bakke A., Lerner R. A. Identification of a cell surface glycoprotein involved in cell aggregation in D. discoideum. Cell. 1979 Oct;18(2):391–398. doi: 10.1016/0092-8674(79)90058-8. [DOI] [PubMed] [Google Scholar]
  11. Glenn K. C., Carney D. H., Fenton J. W., 2nd, Cunningham D. D. Thrombin active site regions required for fibroblast receptor binding and initiation of cell division. J Biol Chem. 1980 Jul 25;255(14):6609–6616. [PubMed] [Google Scholar]
  12. Grinnell F. Fibroblast receptor for cell-substratum adhesion: studies on the interaction of baby hamster kidney cells with latex beads coated by cold insoluble globulin (plasma fibronectin). J Cell Biol. 1980 Jul;86(1):104–112. doi: 10.1083/jcb.86.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harper P. A., Juliano R. L. Two distinct mechanisms of fibroblast adhesion. Nature. 1981 Mar 12;290(5802):136–138. doi: 10.1038/290136a0. [DOI] [PubMed] [Google Scholar]
  14. Hovemann B., Galler R., Walldorf U., Küpper H., Bautz E. K. Vitellogenin in Drosophila melanogaster: sequence of the yolk protein I gene and its flanking regions. Nucleic Acids Res. 1981 Sep 25;9(18):4721–4734. doi: 10.1093/nar/9.18.4721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hung M. C., Wensink P. C. The sequence of the Drosophila melanogaster gene for yolk protein 1. Nucleic Acids Res. 1981 Dec 11;9(23):6407–6419. doi: 10.1093/nar/9.23.6407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Huu Duc-Nguyen, Rosenblum E. N., Zeigel R. F. Persistent infection of a rat kidney cell line with Rauscher murine leukemia virus. J Bacteriol. 1966 Oct;92(4):1133–1140. doi: 10.1128/jb.92.4.1133-1140.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hynes R. O., Ali I. U., Destree A. T., Mautner V., Perkins M. E., Senger D. R., Wagner D. D., Smith K. K. A large glycoprotein lost from the surfaces of transformed cells. Ann N Y Acad Sci. 1978 Jun 20;312:317–342. doi: 10.1111/j.1749-6632.1978.tb16811.x. [DOI] [PubMed] [Google Scholar]
  18. Hynes R. O., Yamada K. M. Fibronectins: multifunctional modular glycoproteins. J Cell Biol. 1982 Nov;95(2 Pt 1):369–377. doi: 10.1083/jcb.95.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kistler W. S., Noyes C., Hsu R., Heinrikson R. L. The amino acid sequence of a testis-specific basic protein that is associated with spermatogenesis. J Biol Chem. 1975 Mar 10;250(5):1847–1853. [PubMed] [Google Scholar]
  20. Klebe R. J. Isolation of a collagen-dependent cell attachment factor. Nature. 1974 Jul 19;250(463):248–251. doi: 10.1038/250248a0. [DOI] [PubMed] [Google Scholar]
  21. Kleinman H. K., McGoodwin E. B., Martin G. R., Klebe R. J., Fietzek P. P., Woolley D. E. Localization of the binding site for cell attachment in the alpha1(I) chain of collagen. J Biol Chem. 1978 Aug 25;253(16):5642–5646. [PubMed] [Google Scholar]
  22. Linsenmayer T. F., Gibney E., Toole B. P., Gross J. Cellular adhesion to collagen. Exp Cell Res. 1978 Oct 15;116(2):470–474. doi: 10.1016/0014-4827(78)90473-1. [DOI] [PubMed] [Google Scholar]
  23. Oldberg A., Ruoslahti E. Interactions between chondroitin sulfate proteoglycan, fibronectin, and collagen. J Biol Chem. 1982 May 10;257(9):4859–4863. [PubMed] [Google Scholar]
  24. Olson M. O., Nagabhushan N., Dzwiniel M., Smillie L. B., Whitaker D. R. Primary structure of alpha-lytic protease: a bacterial homologue of the pancreatic serine proteases. Nature. 1970 Oct 31;228(5270):438–442. doi: 10.1038/228438a0. [DOI] [PubMed] [Google Scholar]
  25. Pearlstein E. Plasma membrane glycoprotein which mediates adhesion of fibroblasts to collagen. Nature. 1976 Aug 5;262(5568):497–500. doi: 10.1038/262497a0. [DOI] [PubMed] [Google Scholar]
  26. Petersen T. E., Thøgersen H. C., Skorstengaard K., Vibe-Pedersen K., Sahl P., Sottrup-Jensen L., Magnusson S. Partial primary structure of bovine plasma fibronectin: three types of internal homology. Proc Natl Acad Sci U S A. 1983 Jan;80(1):137–141. doi: 10.1073/pnas.80.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pierschbacher M. D., Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984 May 3;309(5963):30–33. doi: 10.1038/309030a0. [DOI] [PubMed] [Google Scholar]
  28. Pierschbacher M. D., Ruoslahti E., Sundelin J., Lind P., Peterson P. A. The cell attachment domain of fibronectin. Determination of the primary structure. J Biol Chem. 1982 Aug 25;257(16):9593–9597. [PubMed] [Google Scholar]
  29. Pierschbacher M., Hayman E. G., Ruoslahti E. Synthetic peptide with cell attachment activity of fibronectin. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1224–1227. doi: 10.1073/pnas.80.5.1224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Poole S., Firtel R. A., Lamar E., Rowekamp W. Sequence and expression of the discoidin I gene family in Dictyostelium discoideum. J Mol Biol. 1981 Dec 5;153(2):273–289. doi: 10.1016/0022-2836(81)90278-3. [DOI] [PubMed] [Google Scholar]
  31. Rice C. M., Strauss J. H. Nucleotide sequence of the 26S mRNA of Sindbis virus and deduced sequence of the encoded virus structural proteins. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2062–2066. doi: 10.1073/pnas.78.4.2062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rowlands D. J., Clarke B. E., Carroll A. R., Brown F., Nicholson B. H., Bittle J. L., Houghten R. A., Lerner R. A. Chemical basis of antigenic variation in foot-and-mouth disease virus. Nature. 1983 Dec 15;306(5944):694–697. doi: 10.1038/306694a0. [DOI] [PubMed] [Google Scholar]
  33. Rubin K., Hök M., Obrink B., Timpl R. Substrate adhesion of rat hepatocytes: mechanism of attachment to collagen substrates. Cell. 1981 May;24(2):463–470. doi: 10.1016/0092-8674(81)90337-8. [DOI] [PubMed] [Google Scholar]
  34. Ruoslahti E., Hayman E. G., Pierschbacher M., Engvall E. Fibronectin: purification, immunochemical properties, and biological activities. Methods Enzymol. 1982;82(Pt A):803–831. doi: 10.1016/0076-6879(82)82103-4. [DOI] [PubMed] [Google Scholar]
  35. Schor S. L., Court J. Different mechanisms in the attachment of cells to native and denatured collagen. J Cell Sci. 1979 Aug;38:267–281. doi: 10.1242/jcs.38.1.267. [DOI] [PubMed] [Google Scholar]
  36. Schuppan D., Glanville R. W., Timpl R. Covalent structure of mouse type-IV collagen. Isolation, order and partial amino-acid sequence of cyanogen-bromide and tryptic peptides of pepsin fragment P1 from the alpha 1(IV) chain. Eur J Biochem. 1982 Apr;123(3):505–512. [PubMed] [Google Scholar]
  37. Schwarzbauer J. E., Tamkun J. W., Lemischka I. R., Hynes R. O. Three different fibronectin mRNAs arise by alternative splicing within the coding region. Cell. 1983 Dec;35(2 Pt 1):421–431. doi: 10.1016/0092-8674(83)90175-7. [DOI] [PubMed] [Google Scholar]
  38. Stathakis N. E., Mosesson M. W. Interactions among heparin, cold-insoluble globulin, and fibrinogen in formation of the heparin-precipitable fraction of plasma. J Clin Invest. 1977 Oct;60(4):855–865. doi: 10.1172/JCI108840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Watt K. W., Cottrell B. A., Strong D. D., Doolittle R. F. Amino acid sequence studies on the alpha chain of human fibrinogen. Overlapping sequences providing the complete sequence. Biochemistry. 1979 Nov 27;18(24):5410–5416. doi: 10.1021/bi00591a024. [DOI] [PubMed] [Google Scholar]
  40. Winter G., Fields S. Nucleotide sequence of human influenza A/PR/8/34 segment 2. Nucleic Acids Res. 1982 Mar 25;10(6):2135–2143. doi: 10.1093/nar/10.6.2135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yamada K. M., Kennedy D. W. Fibroblast cellular and plasma fibronectins are similar but not identical. J Cell Biol. 1979 Feb;80(2):492–498. doi: 10.1083/jcb.80.2.492. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES