Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Oct;81(19):6192–6196. doi: 10.1073/pnas.81.19.6192

Adenosine release from stimulated mast cells.

D L Marquardt, H E Gruber, S I Wasserman
PMCID: PMC391886  PMID: 6435127

Abstract

Adenosine release has been documented in lung tissue exposed to hypoxic conditions or antigen challenge. Exogenous adenosine potentiates mediator release from stimulated rat serosal and mouse bone marrow-derived mast cells. To investigate the production and release of adenosine from stimulated mast cells, rat serosal mast cells were purified on metrizamide gradients, sensitized with anti-dinitrophenol IgE for 30 min at 37 degrees C, and challenged in the presence of 1 microM deoxycoformycin with either dinitrophenol-conjugated bovine serum albumin antigen, the calcium ionophore A23187, or compound 48/80. Reactions were terminated by centrifugation, and the supernatants and pellets were assayed for adenosine and ATP content, respectively, by high performance liquid chromatography. The adenosine concentration of the supernatants increased from 0.036 +/- 0.003 nmol per 10(6) cells to 0.049, 0.056, and 0.129 nmol per 10(6) cells 60 sec after challenge with antigen, 48/80, or A23187, respectively. After ionophore stimulation, increased extracellular adenosine was evident by 15 sec, peaked by 60 sec, and remained constant for at least 5 min. A significant decline in stimulated ATP levels was observed within 30 sec, suggesting that the enhanced adenosine concentrations may result from the breakdown of ATP. Cultured mouse bone marrow-derived mast cells under similar conditions also displayed augmented extracellular adenosine levels with A23187 challenge. This endogenous source of adenosine may act locally through a positive feedback mechanism to potentiate immediate hypersensitivity reactions.

Full text

PDF
6192

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson R. H., Zaharevitz D. W., Johns D. G. Enhancement of the biological activity of adenosine analogs by the adenosine deaminase inhibitor 2'-deoxycoformycin. Pharmacology. 1977;15(1):84–89. doi: 10.1159/000136666. [DOI] [PubMed] [Google Scholar]
  2. BERNE R. M. Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol. 1963 Feb;204:317–322. doi: 10.1152/ajplegacy.1963.204.2.317. [DOI] [PubMed] [Google Scholar]
  3. Brown C. M., Collis M. G. Evidence for an A2/Ra adenosine receptor in the guinea-pig trachea. Br J Pharmacol. 1982 Jul;76(3):381–387. doi: 10.1111/j.1476-5381.1982.tb09231.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cushley M. J., Tattersfield A. E., Holgate S. T. Inhaled adenosine and guanosine on airway resistance in normal and asthmatic subjects. Br J Clin Pharmacol. 1983 Feb;15(2):161–165. doi: 10.1111/j.1365-2125.1983.tb01481.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DOLE V. P. Effect of nucleic acid metabolites on lipolysis in adipose tissue. J Biol Chem. 1961 Dec;236:3125–3130. [PubMed] [Google Scholar]
  6. Fox I. H., Kelley W. N. The role of adenosine and 2'-deoxyadenosine in mammalian cells. Annu Rev Biochem. 1978;47:655–686. doi: 10.1146/annurev.bi.47.070178.003255. [DOI] [PubMed] [Google Scholar]
  7. Fredholm B. B. Release of adenosine from rat lung by antigen and compound 48/80. Acta Physiol Scand. 1981 Apr;111(4):507–508. doi: 10.1111/j.1748-1716.1981.tb06772.x. [DOI] [PubMed] [Google Scholar]
  8. Giblett E. R., Anderson J. E., Cohen F., Pollara B., Meuwissen H. J. Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet. 1972 Nov 18;2(7786):1067–1069. doi: 10.1016/s0140-6736(72)92345-8. [DOI] [PubMed] [Google Scholar]
  9. Marquardt D. L., Parker C. W., Sullivan T. J. Potentiation of mast cell mediator release by adenosine. J Immunol. 1978 Mar;120(3):871–878. [PubMed] [Google Scholar]
  10. Marquardt D. L., Walker L. L., Wasserman S. I. Adenosine receptors on mouse bone marrow-derived mast cells: functional significance and regulation by aminophylline. J Immunol. 1984 Aug;133(2):932–937. [PubMed] [Google Scholar]
  11. Matsumoto S. S., Raivio K. O., Seegmiller J. E. Adenine nucleotide degradation during energy depletion in human lymphoblasts. Adenosine accumulation and adenylate energy charge correlation. J Biol Chem. 1979 Sep 25;254(18):8956–8962. [PubMed] [Google Scholar]
  12. Mentzer R. M., Jr, Rubio R., Berne R. M. Release of adenosine by hypoxic canine lung tissue and its possible role in pulmonary circulation. Am J Physiol. 1975 Dec;229(6):1625–1631. doi: 10.1152/ajplegacy.1975.229.6.1625. [DOI] [PubMed] [Google Scholar]
  13. Mills D. C., Smith J. B. The influence on platelet aggregation of drugs that affect the accumulation of adenosine 3':5'-cyclic monophosphate in platelets. Biochem J. 1971 Jan;121(2):185–196. doi: 10.1042/bj1210185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mills G. C., Schmalstieg F. C., Trimmer K. B., Goldman A. S., Goldblum R. M. Purine metabolism in adenosine deaminase deficiency. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2867–2871. doi: 10.1073/pnas.73.8.2867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Paterson A. R., Kim S. C., Bernard O., Cass C. E. Transport of nucleosides. Ann N Y Acad Sci. 1975 Aug 8;255:402–411. doi: 10.1111/j.1749-6632.1975.tb29248.x. [DOI] [PubMed] [Google Scholar]
  16. Pull I., McIlwain H. Metabolism of ( 14 C)adenine and derivatives by cerebral tissues, superfused and electrically stimulated. Biochem J. 1972 Feb;126(4):965–973. doi: 10.1042/bj1260965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. RICHMAN H. G., WYBORNY L. ADENINE NUCLEOTIDE DEGRADATION IN THE RABBIT HEART. Am J Physiol. 1964 Nov;207:1139–1145. doi: 10.1152/ajplegacy.1964.207.5.1139. [DOI] [PubMed] [Google Scholar]
  18. Razin E., Cordon-Cardo C., Good R. A. Growth of a pure population of mouse mast cells in vitro with conditioned medium derived from concanavalin A-stimulated splenocytes. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2559–2561. doi: 10.1073/pnas.78.4.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schwartz L. B., Austen K. F., Wasserman S. I. Immunologic release of beta-hexosaminidase and beta-glucuronidase from purified rat serosal mast cells. J Immunol. 1979 Oct;123(4):1445–1450. [PubMed] [Google Scholar]
  20. Snyder F. F., Mendelsohn J., Seegmiller J. E. Adenosine metabolism in phytohemagglutinin-stimulated human lymphocytes. J Clin Invest. 1976 Sep;58(3):654–666. doi: 10.1172/JCI108512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sredni B., Friedman M. M., Bland C. E., Metcalfe D. D. Ultrastructural, biochemical, and functional characteristics of histamine-containing cells cloned from mouse bone marrow: tentative identification as mucosal mast cells. J Immunol. 1983 Aug;131(2):915–922. [PubMed] [Google Scholar]
  22. Sullivan T. J., Parker C. W. Pharmacologic modulation of inflammatory mediator release by rat mast cells. Am J Pathol. 1976 Nov;85(2):437–464. [PMC free article] [PubMed] [Google Scholar]
  23. Willis R. C., Jolly D. J., Miller A. D., Plent M. M., Esty A. C., Anderson P. J., Chang H. C., Jones O. W., Seegmiller J. E., Friedmann T. Partial phenotypic correction of human Lesch-Nyhan (hypoxanthine-guanine phosphoribosyltransferase-deficient) lymphoblasts with a transmissible retroviral vector. J Biol Chem. 1984 Jun 25;259(12):7842–7849. [PubMed] [Google Scholar]
  24. Wolff J., Cook G. H. Activation of steroidogenesis and adenylate cyclase by adenosine in adrenal and Leydig tumor cells. J Biol Chem. 1977 Jan 25;252(2):687–693. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES