Abstract
Electrotonic coupling between pairs of sympathetic neurons dissociated from superior cervical ganglia of neonatal rats is rare when cells are cultured for 2 weeks in a nutrient medium plus serum and is common when cells are cultured for the same period in serum-free defined medium. This defined medium is the same nutrient medium with five added factors (progesterone, transferrin, putrescine, insulin, and selenium). When added singly to serum-containing medium, insulin and, to a lesser extent, selenium promote the development of electrotonic and dye coupling. The insulin effect is obtained with doses as low as 0.01 microgram/ml and is maximal after exposures from 3 to 5 days. The incidence of electrotonic coupling is also enhanced by exposure of cells to dibutyryl cAMP. This effect is obtained with doses as low as 0.1 mM, is faster (being maximal at approximately equal to 12 hr exposure), and is prolonged in the presence of the phosphodiesterase inhibitor caffeine. Butyrate itself promotes coupling to a small extent, but cAMP involvement is confirmed by similar effects of other membrane permeant analogues. Endogenous levels of cAMP are significantly elevated in cultures grown in the defined medium but not in those in serum-containing medium to which insulin or selenium are added. We conclude that the promotion of coupling by cAMP and by insulin or selenium are independent. The development of coupling in the defined medium thus seems to be a consequence of the addition of promoting substances (insulin, selenium) and the removal of an inhibitory effect of serum on cAMP levels.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bennett M. V. Physiology of electrotonic junctions. Ann N Y Acad Sci. 1966 Jul 14;137(2):509–539. doi: 10.1111/j.1749-6632.1966.tb50178.x. [DOI] [PubMed] [Google Scholar]
- Black I. B. Stages of neurotransmitter development in autonomic neurons. Science. 1982 Mar 5;215(4537):1198–1204. doi: 10.1126/science.215.4537.1198. [DOI] [PubMed] [Google Scholar]
- Elfvin L. G., Forsman C. The ultrastructure of junctions between satellite cells in mammalian sympathetic ganglia as revealed by freeze-etching. J Ultrastruct Res. 1978 Jun;63(3):261–274. doi: 10.1016/s0022-5320(78)80051-3. [DOI] [PubMed] [Google Scholar]
- Flagg-Newton J. L., Dahl G., Loewenstein W. R. Cell junction and cyclic AMP: 1. Upregulation of junctional membrane permeability and junctional membrane particles by administration of cyclic nucleotide or phosphodiesterase inhibitor. J Membr Biol. 1981;63(1-2):105–121. doi: 10.1007/BF01969452. [DOI] [PubMed] [Google Scholar]
- Goodman R., Oesch F., Thoenen H. Changes in enzyme patterns produced by high potassium concentration and dibutyryl cyclic AMP in organ cultures of sympathetic ganglia. J Neurochem. 1974 Aug;23(2):369–378. doi: 10.1111/j.1471-4159.1974.tb04368.x. [DOI] [PubMed] [Google Scholar]
- Grimm J., Frank W. Stimulierung von Kulturen embryonaler Rattenzellen durch Kälberserum. II. Veränderung der ATP- und cAMP-Spiegel; aktivierung einer cAMP-spaltenden Phosphodiesterase. Z Naturforsch B. 1972 May;27(5):562–566. [PubMed] [Google Scholar]
- Grynszpan-Wynograd O., Nicolas G. Intercellular junctions in the adrenal medulla: a comparative freeze-fracture study. Tissue Cell. 1980;12(4):661–672. doi: 10.1016/0040-8166(80)90020-8. [DOI] [PubMed] [Google Scholar]
- Hax W. M., van Venrooij G. E., Vossenberg J. B. Cell communication: a cyclic AMP mediated phenomenon. J Membr Biol. 1974;19(3):253–266. doi: 10.1007/BF01869981. [DOI] [PubMed] [Google Scholar]
- Higgins D., Burton H. Electrotonic synapses are formed by fetal rat sympathetic neurons maintained in a chemically-defined culture medium. Neuroscience. 1982;7(9):2241–2253. doi: 10.1016/0306-4522(82)90134-8. [DOI] [PubMed] [Google Scholar]
- Iacovitti L., Johnson M. I., Joh T. H., Bunge R. P. Biochemical and morphological characterization of sympathetic neurons grown in a chemically-defined medium. Neuroscience. 1982;7(9):2225–2239. doi: 10.1016/0306-4522(82)90133-6. [DOI] [PubMed] [Google Scholar]
- Johnson M., Ross D., Meyers M., Rees R., Bunge R., Wakshull E., Burton H. Synaptic vesicle cytochemistry changes when cultured sympathetic neurones develop cholinergic interactions. Nature. 1976 Jul 22;262(5566):308–310. doi: 10.1038/262308a0. [DOI] [PubMed] [Google Scholar]
- Keen P., McLean W. G. Effect of dibutyryl-cyclic AMP and dexamethasone on noradrenaline synthesis in isolated superior cervical ganglia. J Neurochem. 1974 Jan;22(1):5–10. doi: 10.1111/j.1471-4159.1974.tb12171.x. [DOI] [PubMed] [Google Scholar]
- Kessler J. A., Adler J. E., Black I. B. Substance P and somatostatin regulate sympathetic noradrenergic function. Science. 1983 Sep 9;221(4615):1059–1061. doi: 10.1126/science.6192502. [DOI] [PubMed] [Google Scholar]
- Kessler J. A., Adler J. E., Bohn M. C., Black I. B. Substance P in principal sympathetic neurons: regulation by impulse activity. Science. 1981 Oct 16;214(4518):335–336. doi: 10.1126/science.6169153. [DOI] [PubMed] [Google Scholar]
- Kondo H., Dun N. J., Pappas G. D. A light and electron microscopic study of the rat superior cervical ganglion cells by intracellular HRP-labeling. Brain Res. 1980 Sep 15;197(1):193–199. doi: 10.1016/0006-8993(80)90444-8. [DOI] [PubMed] [Google Scholar]
- Le Douarin N. M., Teillet M. A., Ziller C., Smith J. Adrenergic differentiation of cells of the cholinergic ciliary and Remak ganglia in avian embryo after in vivo transplantation. Proc Natl Acad Sci U S A. 1978 Apr;75(4):2030–2034. doi: 10.1073/pnas.75.4.2030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le Douarin N. M. The ontogeny of the neural crest in avian embryo chimaeras. Nature. 1980 Aug 14;286(5774):663–669. doi: 10.1038/286663a0. [DOI] [PubMed] [Google Scholar]
- Lloyd T., Ebersole B. J., Schneider F. H. Stimulation of tyrosine hydroxylase activity in cultured mouse neuroblastoma cells by monocarboxylic acids. J Neurochem. 1978 Jun;30(6):1641–1643. doi: 10.1111/j.1471-4159.1978.tb10512.x. [DOI] [PubMed] [Google Scholar]
- MARTIN A. R., PILAR G. DUAL MODE OF SYNAPTIC TRANSMISSION IN THE AVIAN CILIARY GANGLION. J Physiol. 1963 Sep;168:443–463. doi: 10.1113/jphysiol.1963.sp007202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackay A. V., Iversen L. L. Increased tyrosine hydroxylase activity of sympathetic ganglia cultured in the presence of dibutyryl cyclic AMP. Brain Res. 1972 Dec 24;48:424–426. doi: 10.1016/0006-8993(72)90204-1. [DOI] [PubMed] [Google Scholar]
- Oey J., Vogel A., Pollack R. Intracellular cyclic AMP concentration responds specifically to growth regulation by serum. Proc Natl Acad Sci U S A. 1974 Mar;71(3):694–698. doi: 10.1073/pnas.71.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Otten J., Johnson G. S., Pastan I. Regulation of cell growth by cyclic adenosine 3',5'-monophosphate. Effect of cell density and agents which alter cell growth on cyclic adenosine 3',5'-monophosphate levels in fibroblasts. J Biol Chem. 1972 Nov 10;247(21):7082–7087. [PubMed] [Google Scholar]
- Pannese E. The satellite cells of the sensory ganglia. Adv Anat Embryol Cell Biol. 1981;65:1–111. doi: 10.1007/978-3-642-67750-2. [DOI] [PubMed] [Google Scholar]
- Patterson P. H., Chun L. L. The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons. I. Effects of conditioned medium. Dev Biol. 1977 Apr;56(2):263–280. doi: 10.1016/0012-1606(77)90269-x. [DOI] [PubMed] [Google Scholar]
- Patterson P. H. Environmental determination of autonomic neurotransmitter functions. Annu Rev Neurosci. 1978;1:1–17. doi: 10.1146/annurev.ne.01.030178.000245. [DOI] [PubMed] [Google Scholar]
- Roper S. An electrophysiological study of chemical and electrical synapses on neurones in the parasympathetic cardiac ganglion of the mudpuppy, Necturus maculosus: evidence for intrinsic ganglionic innervation. J Physiol. 1976 Jan;254(2):427–454. doi: 10.1113/jphysiol.1976.sp011239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seifert W., Paul D. Levels of cyclic AMP in sparse and dense cultures of growing and quiescent 3T3 cells. Nat New Biol. 1972 Dec 27;240(104):281–283. doi: 10.1038/newbio240281a0. [DOI] [PubMed] [Google Scholar]
- Spira M. E., Spray D. C., Bennett M. V. Synaptic organization of expansion motoneurons of Navanax inermis. Brain Res. 1980 Aug 18;195(2):241–269. doi: 10.1016/0006-8993(80)90063-3. [DOI] [PubMed] [Google Scholar]
- Spray D. C., Nerbonne J., Campos de Carvalho A., Harris A. L., Bennett M. V. Substituted benzyl acetates: a new class of compounds that reduce gap junctional conductance by cytoplasmic acidification. J Cell Biol. 1984 Jul;99(1 Pt 1):174–179. doi: 10.1083/jcb.99.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varon S. S., Bunge R. P. Trophic mechanisms in the peripheral nervous system. Annu Rev Neurosci. 1978;1:327–361. doi: 10.1146/annurev.ne.01.030178.001551. [DOI] [PubMed] [Google Scholar]
- Walicke P. A., Patterson P. H. On the role of cyclic nucleotides in the transmitter choice made by cultured sympathetic neurons. J Neurosci. 1981 Apr;1(4):333–342. doi: 10.1523/JNEUROSCI.01-04-00333.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waymire J. C., Gilmer-Waymire K., Boehme R. E. Concomitant elevation of tyrosine hydroxylase and dopamine beta-hydroxylase by cyclic AMP in cultured mouse neuroblastoma cells. J Neurochem. 1978 Sep;31(3):699–705. doi: 10.1111/j.1471-4159.1978.tb07843.x. [DOI] [PubMed] [Google Scholar]

