Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Oct;81(19):6245–6249. doi: 10.1073/pnas.81.19.6245

Developing dorsal root ganglion neurons require trophic support from their central processes: evidence for a role of retrogradely transported nerve growth factor from the central nervous system to the periphery.

H K Yip, E M Johnson Jr
PMCID: PMC391897  PMID: 6207540

Abstract

Injury to the peripheral processes produces a profound cell loss (40-50%) in the dorsal root ganglion of newborn rats. Although division of central processes produces little or no cellular change in sensory ganglion of adult animals, no information has been available on the effect of dorsal root section in developing dorsal root ganglion. We show that 6 days after dorsal rhizotomy on newborn rats, there is a 50% decrease in neuronal number in L5 dorsal root ganglion. A combined central and peripheral lesion of the sensory process results in a greater decrease in neuronal number (70%). Both of these effects can be prevented by the concomitant treatment with nerve growth factor. We also demonstrate that 125I-Ia-labeled nerve growth factor is retrogradely transported with high selectivity from the spinal cord to the dorsal root ganglion via the dorsal roots. The results indicate that trophic support for developing sensory neurons is provided through the central processes. This is presumably due to the uptake and retrograde transport of a trophic factor by the terminals of the central processes. The data suggest that nerve growth factor may be the trophic factor.

Full text

PDF
6245

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bocchini V., Angeletti P. U. The nerve growth factor: purification as a 30,000-molecular-weight protein. Proc Natl Acad Sci U S A. 1969 Oct;64(2):787–794. doi: 10.1073/pnas.64.2.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brunso-Bechtold J. K., Hamburger V. Retrograde transport of nerve growth factor in chicken embryo. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1494–1496. doi: 10.1073/pnas.76.3.1494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carmel P. W., Stein B. M. Cell changes in sensory ganglia following proximal and distal nerve section in the monkey. J Comp Neurol. 1969 Feb;135(2):145–166. doi: 10.1002/cne.901350203. [DOI] [PubMed] [Google Scholar]
  4. Coggeshall R. E. Afferent fibers in the ventral root. Neurosurgery. 1979 May;4(5):443–448. doi: 10.1227/00006123-197905000-00012. [DOI] [PubMed] [Google Scholar]
  5. Constantine-Paton M., Ferrari-Eastman P. Topographic and morphometric effects of bilateral embryonic eye removal on the optic tectum and nucleus isthmus of the leopard frog. J Comp Neurol. 1981 Mar 10;196(4):645–661. doi: 10.1002/cne.901960410. [DOI] [PubMed] [Google Scholar]
  6. Cowan W. M., Wenger E. Cell loss in the trochlear nucleus of the chick during normal development and after radical extirpation of the optic vesicle. J Exp Zool. 1967 Mar;164(2):267–280. doi: 10.1002/jez.1401640210. [DOI] [PubMed] [Google Scholar]
  7. Cragg B. G. What is the signal for chromatolysis? Brain Res. 1970 Sep 29;23(1):1–21. doi: 10.1016/0006-8993(70)90345-8. [DOI] [PubMed] [Google Scholar]
  8. Gorin P. D., Johnson E. M. Experimental autoimmune model of nerve growth factor deprivation: effects on developing peripheral sympathetic and sensory neurons. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5382–5386. doi: 10.1073/pnas.76.10.5382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Griffin J. W., Drachman D. B., Price D. L. Fast axonal transport in motor nerve regeneration. J Neurobiol. 1976 Jul;7(4):355–370. doi: 10.1002/neu.480070407. [DOI] [PubMed] [Google Scholar]
  10. Ha H. Axonal bifurcation in the dorsal root ganglion of the cat: a light and electron microscopic study. J Comp Neurol. 1970 Oct;140(2):227–240. doi: 10.1002/cne.901400206. [DOI] [PubMed] [Google Scholar]
  11. Hamburger V., Brunso-Bechtold J. K., Yip J. W. Neuronal death in the spinal ganglia of the chick embryo and its reduction by nerve growth factor. J Neurosci. 1981 Jan;1(1):60–71. doi: 10.1523/JNEUROSCI.01-01-00060.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hendry I. A., Campbell J. Morphometric analysis of rat superior cervical ganglion after axotomy and nerve growth factor treatment. J Neurocytol. 1976 Jun;5(3):351–360. doi: 10.1007/BF01175120. [DOI] [PubMed] [Google Scholar]
  13. Hendry I. A., Stöckel K., Thoenen H., Iversen L. L. The retrograde axonal transport of nerve growth factor. Brain Res. 1974 Mar 15;68(1):103–121. doi: 10.1016/0006-8993(74)90536-8. [DOI] [PubMed] [Google Scholar]
  14. Hendry I. A. The response of adrenergic neurones to axotomy and nerve growth factor. Brain Res. 1975 Aug 22;94(1):87–97. doi: 10.1016/0006-8993(75)90879-3. [DOI] [PubMed] [Google Scholar]
  15. Hollyday M., Hamburger V. Reduction of the naturally occurring motor neuron loss by enlargement of the periphery. J Comp Neurol. 1976 Dec 1;170(3):311–320. doi: 10.1002/cne.901700304. [DOI] [PubMed] [Google Scholar]
  16. Hulsebosch C. E., Coggeshall R. E. A comparison of axonal numbers in dorsal roots following spinal cord hemisection in neonate and adult rats. Brain Res. 1983 Apr 18;265(2):187–197. doi: 10.1016/0006-8993(83)90332-3. [DOI] [PubMed] [Google Scholar]
  17. Johnson E. M., Jr, Gorin P. D., Brandeis L. D., Pearson J. Dorsal root ganglion neurons are destroyed by exposure in utero to maternal antibody to nerve growth factor. Science. 1980 Nov 21;210(4472):916–918. doi: 10.1126/science.7192014. [DOI] [PubMed] [Google Scholar]
  18. Kessler J. A., Black I. B. The effects of nerve growth factor (NGF) and antiserum to NGF on the development of embryonic sympathetic neurons in vivo. Brain Res. 1980 May 5;189(1):157–168. doi: 10.1016/0006-8993(80)90014-1. [DOI] [PubMed] [Google Scholar]
  19. Komiya Y., Kurokawa M. Asymmetry of protein transport in two branches of bifurcating axons. Brain Res. 1978 Jan 13;139(2):354–358. doi: 10.1016/0006-8993(78)90936-8. [DOI] [PubMed] [Google Scholar]
  20. Lasek R. J. Axoplasmic transport of labeled proteins in rat ventral motoneurons. Exp Neurol. 1968 May;21(1):41–51. doi: 10.1016/0014-4886(68)90032-0. [DOI] [PubMed] [Google Scholar]
  21. Levi-Montalcini R., Aloe L., Mugnaini E., Oesch F., Thoenen H. Nerve growth factor induces volume increase and enhances tyrosine hydroxylase synthesis in chemically axotomized sympathetic ganglia of newborn rats. Proc Natl Acad Sci U S A. 1975 Feb;72(2):595–599. doi: 10.1073/pnas.72.2.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Levi-Montalcini R., Booker B. DESTRUCTION OF THE SYMPATHETIC GANGLIA IN MAMMALS BY AN ANTISERUM TO A NERVE-GROWTH PROTEIN. Proc Natl Acad Sci U S A. 1960 Mar;46(3):384–391. doi: 10.1073/pnas.46.3.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Marchalonis J. J. An enzymic method for the trace iodination of immunoglobulins and other proteins. Biochem J. 1969 Jun;113(2):299–305. doi: 10.1042/bj1130299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ochs S., Erdman J., Jersild R. A., Jr, McAdoo V. Routing of transported materials in the dorsal root and nerve fiber branches of the dorsal root ganglion. J Neurobiol. 1978 Nov;9(6):465–481. doi: 10.1002/neu.480090606. [DOI] [PubMed] [Google Scholar]
  25. Oppenheim R. W., Maderdrut J. L., Wells D. J. Cell death of motoneurons in the chick embryo spinal cord. VI. Reduction of naturally occurring cell death in the thoracolumbar column of Terni by nerve growth factor. J Comp Neurol. 1982 Sep 10;210(2):174–189. doi: 10.1002/cne.902100208. [DOI] [PubMed] [Google Scholar]
  26. Pilar G., Landmesser L. Ultrastructural differences during embryonic cell death in normal and peripherally deprived ciliary ganglia. J Cell Biol. 1976 Feb;68(2):339–356. doi: 10.1083/jcb.68.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Prestige M. C. The control of cell number in the lumbar spinal ganglia during the development of Xenopus laevis tadpoles. J Embryol Exp Morphol. 1967 Jun;17(3):453–471. [PubMed] [Google Scholar]
  28. Prestige M. C. The control of cell number in the lumbar ventral horns during the development of Xenopus laevis tadpoles. J Embryol Exp Morphol. 1967 Dec;18(3):359–387. [PubMed] [Google Scholar]
  29. Stoeckel K., Schwab M., Thoenen H. Specificity of retrograde transport of nerve growth factor (NGF) in sensory neurons: a biochemical and morphological study. Brain Res. 1975 May 16;89(1):1–14. doi: 10.1016/0006-8993(75)90129-8. [DOI] [PubMed] [Google Scholar]
  30. Suh Y. S., Chung K., Coggeshall R. E. A study of axonal diameters and areas in lumbosacral roots and nerves in the rat. J Comp Neurol. 1984 Feb 1;222(4):473–481. doi: 10.1002/cne.902220402. [DOI] [PubMed] [Google Scholar]
  31. Thoenen H., Barde Y. A. Physiology of nerve growth factor. Physiol Rev. 1980 Oct;60(4):1284–1335. doi: 10.1152/physrev.1980.60.4.1284. [DOI] [PubMed] [Google Scholar]
  32. Yip H. K., Johnson E. M., Jr Retrograde transport of nerve growth factor in lesioned goldfish retinal ganglion cells. J Neurosci. 1983 Nov;3(11):2172–2182. doi: 10.1523/JNEUROSCI.03-11-02172.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES