Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Oct;81(20):6320–6324. doi: 10.1073/pnas.81.20.6320

Human alcohol dehydrogenase: structural differences between the beta and gamma subunits suggest parallel duplications in isoenzyme evolution and predominant expression of separate gene descendants in livers of different mammals.

R Bühler, J Hempel, R Kaiser, J P von Wartburg, B L Vallee, H Jörnvall
PMCID: PMC391915  PMID: 6387702

Abstract

Human alcohol dehydrogenase (ADH; alcohol:NAD+ oxidoreductase, EC 1.1.1.1) occurs in multiple forms, which exhibit distinct electrophoretic mobilities and enzymatic properties. The homogeneous isoenzymes beta 1 beta 1 and gamma 1 gamma 1 were isolated from livers of Caucasians with "typical" ADH phenotype by double ternary complex affinity chromatography and ion exchange chromatography. The differences between the beta 1 and gamma 1 subunits were determined by structural analysis of all tryptic peptides from the carboxymethylated proteins. The human beta 1 and gamma 1 chains differ at 21 of the 373 positions (5.6%). Ten tryptic peptides account for the differences. All residue substitutions are compatible with one-base mutations and result in largely unaltered properties, but five lead to charge differences. Sixteen substitutions are at positions corresponding to the catalytic domain of the well-known horse enzyme; five correspond to the coenzyme-binding domain. Substitutions adjacent to important regions may correlate with differences in coenzyme binding, substrate specificities, and active-site relationships. The residue replacements between the beta 1 and gamma 1 subunits of human ADH are not identical to the known substitutions between ethanol-active (E) and steroid-active (S) subunits of horse ADH. Thus, the duplication leading to human beta 1 and gamma 1 subunits is separate and different from that leading to equine E and S subunits. Both duplications are likely to have occurred after the ancestral separation of human and equine ADH. Of the 21 residues that are different between beta 1/gamma 1, 13 in gamma 1 but only 6 in beta 1 are identical to those of the horse E chain. This suggests a closer relationship between gamma 1 and E, although beta 1 in man and E in the horse are the subunits recovered in highest yield from liver ADH preparations. Consequently, in these two mammalian species, relative activities of genes for an isoenzyme family appear to be different.

Full text

PDF
6320

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger D., Berger M., von Wartburg J. P. Structural studies of human-liver alcohol-dehydrogenase isoenzymes. Eur J Biochem. 1974 Dec 16;50(1):215–225. doi: 10.1111/j.1432-1033.1974.tb03890.x. [DOI] [PubMed] [Google Scholar]
  2. Bosron W. F., Li T. K., Dafeldecker W. P., Vallee B. L. Human liver pi-alcohol dehydrogenase: kinetic and molecular properties. Biochemistry. 1979 Mar 20;18(6):1101–1105. doi: 10.1021/bi00573a026. [DOI] [PubMed] [Google Scholar]
  3. Bosron W. F., Li T. K., Vallee B. L. New molecular forms of human liver alcohol dehydrogenase: isolation and characterization of ADHIndianapolis. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5784–5788. doi: 10.1073/pnas.77.10.5784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bosron W. F., Magnes L. J., Li T. K. Kinetic and electrophoretic properties of native and recombined isoenzymes of human liver alcohol dehydrogenase. Biochemistry. 1983 Apr 12;22(8):1852–1857. doi: 10.1021/bi00277a017. [DOI] [PubMed] [Google Scholar]
  5. Bühler R., von Wartburg J. P. Purification and substrate specificities of three human liver alcohol dehydrogenase isoenzymes. FEBS Lett. 1982 Jul 19;144(1):135–139. doi: 10.1016/0014-5793(82)80586-3. [DOI] [PubMed] [Google Scholar]
  6. Eklund H., Brändén C. I., Jörnvall H. Structural comparisons of mammalian, yeast and bacillar alcohol dehydrogenases. J Mol Biol. 1976 Mar 25;102(1):61–73. doi: 10.1016/0022-2836(76)90073-5. [DOI] [PubMed] [Google Scholar]
  7. Eklund H., Nordström B., Zeppezauer E., Söderlund G., Ohlsson I., Boiwe T., Söderberg B. O., Tapia O., Brändén C. I., Akeson A. Three-dimensional structure of horse liver alcohol dehydrogenase at 2-4 A resolution. J Mol Biol. 1976 Mar 25;102(1):27–59. doi: 10.1016/0022-2836(76)90072-3. [DOI] [PubMed] [Google Scholar]
  8. Eklund H., Plapp B. V., Samama J. P., Brändén C. I. Binding of substrate in a ternary complex of horse liver alcohol dehydrogenase. J Biol Chem. 1982 Dec 10;257(23):14349–14358. [PubMed] [Google Scholar]
  9. Jörnvall H., Hempel J., Vallee B. L., Bosron W. F., Li T. K. Human liver alcohol dehydrogenase: amino acid substitution in the beta 2 beta 2 Oriental isozyme explains functional properties, establishes an active site structure, and parallels mutational exchanges in the yeast enzyme. Proc Natl Acad Sci U S A. 1984 May;81(10):3024–3028. doi: 10.1073/pnas.81.10.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jörnvall H. Horse liver alcohol dehydrogenase. The primary structure of an N-terminal part of the protein chain of the ethanol-active isoenzyme. Eur J Biochem. 1970 Jul;14(3):521–534. doi: 10.1111/j.1432-1033.1970.tb00319.x. [DOI] [PubMed] [Google Scholar]
  11. Jörnvall H., Philipson L. Limited proteolysis and a reactive cysteine residue define accesible regions in the native conformation of the adenovirus hexon protein. Eur J Biochem. 1980 Feb;104(1):237–247. doi: 10.1111/j.1432-1033.1980.tb04421.x. [DOI] [PubMed] [Google Scholar]
  12. Jörnvall H., Pietruszko R. Structural studies of alcohol dehydrogenase from human liver. Eur J Biochem. 1972 Feb 15;25(2):283–290. doi: 10.1111/j.1432-1033.1972.tb01695.x. [DOI] [PubMed] [Google Scholar]
  13. Jörnvall H. The primary structure of yeast alcohol dehydrogenase. Eur J Biochem. 1977 Feb;72(3):425–442. doi: 10.1111/j.1432-1033.1977.tb11267.x. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lange L. G., Sytkowski A. J., Vallee B. L. Human liver alcohol dehydrogenase: purification, composition, and catalytic features. Biochemistry. 1976 Oct 19;15(21):4687–4693. doi: 10.1021/bi00666a023. [DOI] [PubMed] [Google Scholar]
  16. Lange L. G., Vallee B. L. Double-ternary complex affinity chromatography: preparation of alcohol dehydrogenases. Biochemistry. 1976 Oct 19;15(21):4681–4686. doi: 10.1021/bi00666a022. [DOI] [PubMed] [Google Scholar]
  17. Lutstorf U. M., von Wartburg J. P. Subunit Composition of horse liver alcohol dehydrogenase isoenzymes. FEBS Lett. 1969 Nov 12;5(3):202–206. doi: 10.1016/0014-5793(69)80332-7. [DOI] [PubMed] [Google Scholar]
  18. Parés X., Vallee B. L. New human liver alcohol dehydrogenase forms with unique kinetic characteristics. Biochem Biophys Res Commun. 1981 Jan 15;98(1):122–130. doi: 10.1016/0006-291x(81)91878-7. [DOI] [PubMed] [Google Scholar]
  19. Pietruszko R., Theorell H. Subunit composition of horse liver alcohol dehydrogenase. Arch Biochem Biophys. 1969 Apr;131(1):288–298. doi: 10.1016/0003-9861(69)90133-7. [DOI] [PubMed] [Google Scholar]
  20. Smith M., Hopkinson D. A., Harris H. Alcohol dehydrogenase isozymes in adult human stomach and liver: evidence for activity of the ADH 3 locus. Ann Hum Genet. 1972 Mar;35(3):243–253. doi: 10.1111/j.1469-1809.1957.tb01398.x. [DOI] [PubMed] [Google Scholar]
  21. Smith M., Hopkinson D. A., Harris H. Developmental changes and polymorphism in human alcohol dehydrogenase. Ann Hum Genet. 1971 Feb;34(3):251–271. doi: 10.1111/j.1469-1809.1971.tb00238.x. [DOI] [PubMed] [Google Scholar]
  22. Smith M., Hopkinson D. A., Harris H. Studies on the properties of the human alcohol dehydrogenase isozymes determined by the different loci ADH1, ADH2, ADH3. Ann Hum Genet. 1973 Jul;37(1):49–67. doi: 10.1111/j.1469-1809.1973.tb01814.x. [DOI] [PubMed] [Google Scholar]
  23. Smith M., Hopkinson D. A., Harris H. Studies on the subunit structure and molecular size of the human alcohol dehydrogenase isozymes determined by the different loci, ADH1, ADH2, and ADH3. Ann Hum Genet. 1973 Apr;36(4):401–414. doi: 10.1111/j.1469-1809.1973.tb00604.x. [DOI] [PubMed] [Google Scholar]
  24. Strydom D. J., Vallee B. L. Characterization of human alcohol dehydrogenase isoenzymes by high-performance liquid chromatographic peptide mapping. Anal Biochem. 1982 Jul 1;123(2):422–429. doi: 10.1016/0003-2697(82)90467-5. [DOI] [PubMed] [Google Scholar]
  25. Wagner F. W., Burger A. R., Vallee B. L. Kinetic properties of human liver alcohol dehydrogenase: oxidation of alcohols by class I isoenzymes. Biochemistry. 1983 Apr 12;22(8):1857–1863. doi: 10.1021/bi00277a018. [DOI] [PubMed] [Google Scholar]
  26. Wills C., Jörnvall H. The two major isozymes of yeast alcohol dehydrogenase. Eur J Biochem. 1979 Sep;99(2):323–331. doi: 10.1111/j.1432-1033.1979.tb13260.x. [DOI] [PubMed] [Google Scholar]
  27. Woods K. R., Wang K. T. Separation of dansyl-amino acids by polyamide layer chromatography. Biochim Biophys Acta. 1967 Feb 21;133(2):369–370. doi: 10.1016/0005-2795(67)90078-5. [DOI] [PubMed] [Google Scholar]
  28. Yoshida A., Impraim C. C., Huang I. Y. Enzymatic and structural differences between usual and atypical human liver alcohol dehydrogenases. J Biol Chem. 1981 Dec 10;256(23):12430–12436. [PubMed] [Google Scholar]
  29. von Wartburg J. P., Papenberg J., Aebi H. An atypical human alcohol dehydrogenase. Can J Biochem. 1965 Jul;43(7):889–898. doi: 10.1139/o65-102. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES