Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Oct;81(20):6427–6431. doi: 10.1073/pnas.81.20.6427

Body size and food size in freshwater zooplankton

Kenneth G Bogdan 1, John J Gilbert 1,*
PMCID: PMC391937  PMID: 16593521

Abstract

We used double-label liquid scintillation techniques to measure the efficiencies with which eight different-sized zooplankton species ingested four cell types relative to a standard cell type (Chlamydomonas). Efficiency ratios (ERs: clearance rate on cell type X ÷ clearance rate on Chlamydomonas) on the three ultraplankton (<5 μm in diameter) cells (a coccoid bacterium and the algae Synechococcus and Nannochloris) varied greatly among zooplankton species but were not correlated with zooplankton body length. Variation in ERs on a much larger (17 × 14 μm) algal cell (Cryptomonas) was only partly explained by zooplankton body length. The eight zooplankton species were classified into three functional groups: (i) species having moderate to high ERs on all ultraplankton (0.4 < ER < 1.6) and ERs on Cryptomonas proportional to their body lengths (Conochilus, Diaphanosoma, and probably Keratella cochlearis and Ceriodaphnia); (ii) species having extremely low ERs on bacteria (mean ER < 0.05), higher but still low ERs on ultraphytoplankton (ER generally < 0.4), and ERs on Cryptomonas proportional to their body lengths (Bosmina, Diaptomus copepodites and adults); (iii) species having extremely low ERs on all ultraplankton (mean ER < 0.05) and ERs on Cryptomonas much higher than expected given their body lengths (Keratella crassa, Polyarthra, and Diaptomus nauplii). These functional groups follow neither taxonomic nor body-length groupings. We conclude that zooplankton body length may influence the maximal particle size a species can ingest but has little influence on the ingestion of smaller particles. Two frequently used models relating zooplankton body size and food size are unrealistic.

Keywords: ultraplankton, competition, selective feeding

Full text

PDF
6427

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agris P. F., Campbell I. D. Proton nuclear magnetic resonance of intact Friend leukemia cells: phosphorylcholine increase during differentiation. Science. 1982 Jun 18;216(4552):1325–1327. doi: 10.1126/science.7079765. [DOI] [PubMed] [Google Scholar]
  2. Brooks J. L., Dodson S. I. Predation, Body Size, and Composition of Plankton. Science. 1965 Oct 1;150(3692):28–35. doi: 10.1126/science.150.3692.28. [DOI] [PubMed] [Google Scholar]
  3. COMITA G. W., TOMMERDAHL D. M. The postembryonic developmental instars of Diaptomus siciloides Lilljeborg. J Morphol. 1960 Nov;107:297–355. doi: 10.1002/jmor.1051070305. [DOI] [PubMed] [Google Scholar]
  4. Heller W., Baur K. F., Bochtler H., Müller K. Mögliche Einflüsse von Natrium-Nitroprussid und seiner Metaboliten auf den Kohlenhydrat- und Energiestoffwechsel bei intraokularen Eingriffen. Med Welt. 1981 Mar 6;32(10):316–321. [PubMed] [Google Scholar]
  5. Li W. K., Rao D. V., Harrison W. G., Smith J. C., Cullen J. J., Irwin B., Platt T. Autotrophic picoplankton in the tropical ocean. Science. 1983 Jan 21;219(4582):292–295. doi: 10.1126/science.219.4582.292. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES