Abstract
We used double-label liquid scintillation techniques to measure the efficiencies with which eight different-sized zooplankton species ingested four cell types relative to a standard cell type (Chlamydomonas). Efficiency ratios (ERs: clearance rate on cell type X ÷ clearance rate on Chlamydomonas) on the three ultraplankton (<5 μm in diameter) cells (a coccoid bacterium and the algae Synechococcus and Nannochloris) varied greatly among zooplankton species but were not correlated with zooplankton body length. Variation in ERs on a much larger (17 × 14 μm) algal cell (Cryptomonas) was only partly explained by zooplankton body length. The eight zooplankton species were classified into three functional groups: (i) species having moderate to high ERs on all ultraplankton (0.4 < ER < 1.6) and ERs on Cryptomonas proportional to their body lengths (Conochilus, Diaphanosoma, and probably Keratella cochlearis and Ceriodaphnia); (ii) species having extremely low ERs on bacteria (mean ER < 0.05), higher but still low ERs on ultraphytoplankton (ER generally < 0.4), and ERs on Cryptomonas proportional to their body lengths (Bosmina, Diaptomus copepodites and adults); (iii) species having extremely low ERs on all ultraplankton (mean ER < 0.05) and ERs on Cryptomonas much higher than expected given their body lengths (Keratella crassa, Polyarthra, and Diaptomus nauplii). These functional groups follow neither taxonomic nor body-length groupings. We conclude that zooplankton body length may influence the maximal particle size a species can ingest but has little influence on the ingestion of smaller particles. Two frequently used models relating zooplankton body size and food size are unrealistic.
Keywords: ultraplankton, competition, selective feeding
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agris P. F., Campbell I. D. Proton nuclear magnetic resonance of intact Friend leukemia cells: phosphorylcholine increase during differentiation. Science. 1982 Jun 18;216(4552):1325–1327. doi: 10.1126/science.7079765. [DOI] [PubMed] [Google Scholar]
- Brooks J. L., Dodson S. I. Predation, Body Size, and Composition of Plankton. Science. 1965 Oct 1;150(3692):28–35. doi: 10.1126/science.150.3692.28. [DOI] [PubMed] [Google Scholar]
- COMITA G. W., TOMMERDAHL D. M. The postembryonic developmental instars of Diaptomus siciloides Lilljeborg. J Morphol. 1960 Nov;107:297–355. doi: 10.1002/jmor.1051070305. [DOI] [PubMed] [Google Scholar]
- Heller W., Baur K. F., Bochtler H., Müller K. Mögliche Einflüsse von Natrium-Nitroprussid und seiner Metaboliten auf den Kohlenhydrat- und Energiestoffwechsel bei intraokularen Eingriffen. Med Welt. 1981 Mar 6;32(10):316–321. [PubMed] [Google Scholar]
- Li W. K., Rao D. V., Harrison W. G., Smith J. C., Cullen J. J., Irwin B., Platt T. Autotrophic picoplankton in the tropical ocean. Science. 1983 Jan 21;219(4582):292–295. doi: 10.1126/science.219.4582.292. [DOI] [PubMed] [Google Scholar]