Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Oct;81(20):6511–6515. doi: 10.1073/pnas.81.20.6511

Intracellular free magnesium in erythrocytes of essential hypertension: relation to blood pressure and serum divalent cations.

L M Resnick, R K Gupta, J H Laragh
PMCID: PMC391954  PMID: 6593713

Abstract

Intracellular levels of free Mg2+ in human erythrocytes were determined by 31P NMR spectroscopy in 26 fasted subjects and were correlated with blood pressures and serum levels of total magnesium (bound and free Mg2+) and ionized calcium from the same subjects in a seated position. Untreated hypertensive individuals consistently demonstrated lower levels of intracellular free magnesium (192 +/- 8 microM, n = 11) than either normotensive (261 +/- 9.8 microM, n = 7, P less than 0.001 vs. untreated hypertensive subjects) or hypertensive subjects whose blood pressure had been normalized on therapy (237 +/- 7.8 microM, n = 8, P less than 0.005 vs. untreated hypertensives). For all subjects, strong relationships existed between intracellular free magnesium and diastolic blood pressure (r = -0.85, P less than 0.001) and systolic blood pressure (r = -0.71, P less than 0.001). Significant relationships also were observed between intracellular free magnesium levels and extracellular serum levels of calcium ion (r = -0.77, P less than 0.001) as well as serum concentrations of total magnesium (r = 0.62, P less than 0.001). We conclude that significant depletion of intracellular free magnesium levels are apparent in erythrocytes of subjects with essential hypertension. Furthermore, the close, inverse relationship of free magnesium levels with the height of the blood pressure suggests that abnormalities of intracellular magnesium metabolism may contribute to the pathophysiology of human essential hypertension.

Full text

PDF
6511

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALBERT D. G., MORITA Y., ISERI L. T. Serum magnesium and plasma sodium levels in essential vascular hypertension. Circulation. 1958 Apr;17(4 Pt 2):761–764. doi: 10.1161/01.cir.17.4.761. [DOI] [PubMed] [Google Scholar]
  2. Altura B. M., Altura B. T., Gebrewold A., Ising H., Günther T. Magnesium deficiency and hypertension: correlation between magnesium-deficient diets and microcirculatory changes in situ. Science. 1984 Mar 23;223(4642):1315–1317. doi: 10.1126/science.6701524. [DOI] [PubMed] [Google Scholar]
  3. Altura B. M., Altura B. T. Magnesium and vascular tone and reactivity. Blood Vessels. 1978;15(1-3):5–16. doi: 10.1159/000158148. [DOI] [PubMed] [Google Scholar]
  4. Altura B. M., Altura B. T. Magnesium ions and contraction of vascular smooth muscles: relationship to some vascular diseases. Fed Proc. 1981 Oct;40(12):2672–2679. [PubMed] [Google Scholar]
  5. Berthelot A., Esposito J. Effects of dietary magnesium on the development of hypertension in the spontaneously hypertensive rat. J Am Coll Nutr. 1983;2(4):343–353. doi: 10.1080/07315724.1983.10719931. [DOI] [PubMed] [Google Scholar]
  6. Cittadini A., Scarpa A. Intracellular Mg2+ homeostasis of Ehrlich ascites tumor cells. Arch Biochem Biophys. 1983 Nov;227(1):202–209. doi: 10.1016/0003-9861(83)90363-6. [DOI] [PubMed] [Google Scholar]
  7. Dyckner T., Wester P. O. Effect of magnesium on blood pressure. Br Med J (Clin Res Ed) 1983 Jun 11;286(6381):1847–1849. doi: 10.1136/bmj.286.6381.1847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Erne P., Bolli P., Bürgisser E., Bühler F. R. Correlation of platelet calcium with blood pressure. Effect of antihypertensive therapy. N Engl J Med. 1984 Apr 26;310(17):1084–1088. doi: 10.1056/NEJM198404263101705. [DOI] [PubMed] [Google Scholar]
  9. Garfinkel L., Garfinkel D. Calculation of free-Mg2+ concentration in adenosine 5'-triphosphate containing solutions in vitro and in vivo. Biochemistry. 1984 Jul 17;23(15):3547–3552. doi: 10.1021/bi00310a025. [DOI] [PubMed] [Google Scholar]
  10. Gupta R. K., Benovic J. L., Rose Z. B. Magnetic resonance studies of the binding of ATP and cations to human hemoglobin. J Biol Chem. 1978 Sep 10;253(17):6165–6171. [PubMed] [Google Scholar]
  11. Gupta R. K., Benovic J. L., Rose Z. B. The determination of the free magnesium level in the human red blood cell by 31P NMR. J Biol Chem. 1978 Sep 10;253(17):6172–6176. [PubMed] [Google Scholar]
  12. Gupta R. K., Gupta P., Moore R. D. NMR studies of intracellular metal ions in intact cells and tissues. Annu Rev Biophys Bioeng. 1984;13:221–246. doi: 10.1146/annurev.bb.13.060184.001253. [DOI] [PubMed] [Google Scholar]
  13. Gupta R. K., Gupta P., Yushok W. D., Rose Z. B. Measurement of the dissociation constant of MgATP at physiological nucleotide levels by a combination of 31P NMR and optical absorbance spectroscopy. Biochem Biophys Res Commun. 1983 Nov 30;117(1):210–216. doi: 10.1016/0006-291x(83)91562-0. [DOI] [PubMed] [Google Scholar]
  14. Gupta R. K., Gupta P., Yushok W. D., Rose Z. B. On the noninvasive measurement of intracellular free magnesium by 31P NMR spectroscopy. Physiol Chem Phys Med NMR. 1983;15(3):265–280. [PubMed] [Google Scholar]
  15. Gupta R. K., Yushok W. D. Noninvasive 31P NMR probes of free Mg2+, MgATP, and MgADP in intact Ehrlich ascites tumor cells. Proc Natl Acad Sci U S A. 1980 May;77(5):2487–2491. doi: 10.1073/pnas.77.5.2487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Güther T., Vormann J., Förster R. Regulation of intracellular magnesium by Mg2+ efflux. Biochem Biophys Res Commun. 1984 Feb 29;119(1):124–131. doi: 10.1016/0006-291x(84)91627-9. [DOI] [PubMed] [Google Scholar]
  17. Karaki H., Hatano K., Weiss G. B. Effects of magnesium on 45Ca uptake and release at different sites in rabbit aortic smooth muscle. Pflugers Arch. 1983 Jun;398(1):27–32. doi: 10.1007/BF00584709. [DOI] [PubMed] [Google Scholar]
  18. Kesteloot H., Geboers J. Calcium and blood pressure. Lancet. 1982 Apr 10;1(8276):813–815. doi: 10.1016/s0140-6736(82)91870-0. [DOI] [PubMed] [Google Scholar]
  19. McCarron D. A. Low serum concentrations of ionized calcium in patients with hypertension. N Engl J Med. 1982 Jul 22;307(4):226–228. doi: 10.1056/NEJM198207223070405. [DOI] [PubMed] [Google Scholar]
  20. Miyazaki M., Okunishi H., Nishimura K., Toda N. Vascular angiotensin-converting enzyme activity in man and other species. Clin Sci (Lond) 1984 Jan;66(1):39–45. doi: 10.1042/cs0660039. [DOI] [PubMed] [Google Scholar]
  21. Petersen B., Schroll M., Christiansen C., Transbol I. Serum and erythrocyte magnesium in normal elderly danish people. Relationship to blood pressure and serum lipids. Acta Med Scand. 1977 Jan;201(1-2):31–34. doi: 10.1111/j.0954-6820.1977.tb15650.x. [DOI] [PubMed] [Google Scholar]
  22. Resnick L. M., Laragh J. H., Sealey J. E., Alderman M. H. Divalent cations in essential hypertension. Relations between serum ionized calcium, magnesium, and plasma renin activity. N Engl J Med. 1983 Oct 13;309(15):888–891. doi: 10.1056/NEJM198310133091504. [DOI] [PubMed] [Google Scholar]
  23. Stephenson E. W. Magnesium effects on activation of skinned fibers from striated muscle. Fed Proc. 1981 Oct;40(12):2662–2666. [PubMed] [Google Scholar]
  24. Tsien R. Y. Intracellular measurements of ion activities. Annu Rev Biophys Bioeng. 1983;12:91–116. doi: 10.1146/annurev.bb.12.060183.000515. [DOI] [PubMed] [Google Scholar]
  25. Winkler A. W., Smith P. K., Hoff H. E. INTRAVENOUS MAGNESIUM SULFATE IN THE TREATMENT OF NEPHRITIC CONVULSIONS IN ADULTS. J Clin Invest. 1942 Mar;21(2):207–216. doi: 10.1172/JCI101292. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES