Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Nov;81(21):6747–6751. doi: 10.1073/pnas.81.21.6747

The translational mobility of substances within the cytoplasmic matrix.

K Jacobson, J Wojcieszyn
PMCID: PMC392008  PMID: 6387711

Abstract

The translational mobility of fluorescent-labeled molecules injected into the cytoplasm of living cells can be measured by the fluorescence recovery after photobleaching (FRAP) technique. In the fibroblast cytoplasm, the diffusion coefficients, D, of test macromolecules ranging in molecular weight from 12,000 to 440,000 are about 10(-8) cm2/sec and exhibit almost no dependence on molecular weight. FRAP experiments also showed that macromolecular diffusion within Sepharose beads having an effective pore size smaller than the "microtrabecular lattice" is only slightly retarded compared to buffer values--in contrast to the marked retardation measured in the cytoplasm. This leads to the conclusion that diffusion in the cytomatrix is dominated not by steric effects but rather by binding of the diffusing species to elements of the cytomatrix. These diffusion rates were difficult to modulate; cytochalasin, colchicine (except at 5 degrees C), and taxol treatments had little effect. The diffusion rates were not dependent on cellular energy metabolism. However, hypotonic treatment increased the D for bovine serum albumin by nearly 2-fold, whereas hypertonic treatment halved D. Withdrawing the free water from the cell by using 44% polyethylene glycol treatment stopped the translational mobility of the test molecules. A survey of the recent literature is presented, which shows that major differences in the cytomatrix of different cell types exist with respect to the translational diffusion of injected probes. Finally, the spectrum of cytoplasmic translational mobilities ranging from small molecules to organelles is discussed.

Full text

PDF
6747

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. J., Bray D. Rapid transport of foreign particles microinjected into crab axons. Nature. 1983 Jun 23;303(5919):718–720. doi: 10.1038/303718a0. [DOI] [PubMed] [Google Scholar]
  2. Adams R. J. Organelle movement in axons depends on ATP. Nature. 1982 May 27;297(5864):327–329. doi: 10.1038/297327a0. [DOI] [PubMed] [Google Scholar]
  3. Barisas B. G., Leuther M. D. Fluorescence photobleaching recovery measurement of protein absolute diffusion constants. Biophys Chem. 1979 Sep;10(2):221–229. doi: 10.1016/0301-4622(79)85044-9. [DOI] [PubMed] [Google Scholar]
  4. Beckerle M. C. Microinjected fluorescent polystyrene beads exhibit saltatory motion in tissue culture cells. J Cell Biol. 1984 Jun;98(6):2126–2132. doi: 10.1083/jcb.98.6.2126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brady S. T., Lasek R. J., Allen R. D. Fast axonal transport in extruded axoplasm from squid giant axon. Science. 1982 Dec 10;218(4577):1129–1131. doi: 10.1126/science.6183745. [DOI] [PubMed] [Google Scholar]
  6. Clegg J. S. Intracellular water and the cytomatrix: some methods of study and current views. J Cell Biol. 1984 Jul;99(1 Pt 2):167s–171s. doi: 10.1083/jcb.99.1.167s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elson E. L., Reidler J. A. Analysis of cell surface interactions by measurements of lateral mobility. J Supramol Struct. 1979;12(4):481–489. doi: 10.1002/jss.400120408. [DOI] [PubMed] [Google Scholar]
  8. Fulton A. B. How crowded is the cytoplasm? Cell. 1982 Sep;30(2):345–347. doi: 10.1016/0092-8674(82)90231-8. [DOI] [PubMed] [Google Scholar]
  9. Graessmann M., Graessman A. "Early" simian-virus-40-specific RNA contains information for tumor antigen formation and chromatin replication. Proc Natl Acad Sci U S A. 1976 Feb;73(2):366–370. doi: 10.1073/pnas.73.2.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hayden J. H., Allen R. D., Goldman R. D. Cytoplasmic transport in keratocytes: direct visualization of particle translocation along microtubules. Cell Motil. 1983;3(1):1–19. doi: 10.1002/cm.970030102. [DOI] [PubMed] [Google Scholar]
  11. Herman B., Albertini D. F. A time-lapse video image intensification analysis of cytoplasmic organelle movements during endosome translocation. J Cell Biol. 1984 Feb;98(2):565–576. doi: 10.1083/jcb.98.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heuser J. E., Kirschner M. W. Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J Cell Biol. 1980 Jul;86(1):212–234. doi: 10.1083/jcb.86.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Horowitz S. B., Fenichel I. R., Hoffman B., Kollmann G., Shapiro B. The intracellular transport and distribution of cysteamine phosphate derivatives. Biophys J. 1970 Oct;10(10):994–1010. doi: 10.1016/S0006-3495(70)86348-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Horowitz S. B., Miller D. S. Solvent properties of ground substance studied by cryomicrodissection and intracellular reference-phase techniques. J Cell Biol. 1984 Jul;99(1 Pt 2):172s–179s. doi: 10.1083/jcb.99.1.172s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jacobson K., Derzko Z., Wu E. S., Hou Y., Poste G. Measurement of the lateral mobility of cell surface components in single, living cells by fluorescence recovery after photobleaching. J Supramol Struct. 1976;5(4):565(417)–576(428). doi: 10.1002/jss.400050411. [DOI] [PubMed] [Google Scholar]
  16. Jacobson K., Elson E., Koppel D., Webb W. International workshop on the application of fluorescence photobleaching techniques to problems in cell biology. Fed Proc. 1983 Jan;42(1):72–79. [PubMed] [Google Scholar]
  17. Kreis T. E., Geiger B., Schlessinger J. Mobility of microinjected rhodamine actin within living chicken gizzard cells determined by fluorescence photobleaching recovery. Cell. 1982 Jul;29(3):835–845. doi: 10.1016/0092-8674(82)90445-7. [DOI] [PubMed] [Google Scholar]
  18. Livingston D. J., La Mar G. N., Brown W. D. Myoglobin diffusion in bovine heart muscle. Science. 1983 Apr 1;220(4592):71–73. doi: 10.1126/science.6828881. [DOI] [PubMed] [Google Scholar]
  19. Mastro A. M., Babich M. A., Taylor W. D., Keith A. D. Diffusion of a small molecule in the cytoplasm of mammalian cells. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3414–3418. doi: 10.1073/pnas.81.11.3414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Paine P. L. Diffusive and nondiffusive proteins in vivo. J Cell Biol. 1984 Jul;99(1 Pt 2):188s–195s. doi: 10.1083/jcb.99.1.188s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Parsegian V. A., Rau D. C. Water near intracellular surfaces. J Cell Biol. 1984 Jul;99(1 Pt 2):196s–200s. doi: 10.1083/jcb.99.1.196s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Porter K. R., Anderson K. L. The structure of the cytoplasmic matrix preserved by freeze-drying and freeze-substitution. Eur J Cell Biol. 1982 Nov;29(1):83–96. [PubMed] [Google Scholar]
  23. RENKIN E. M. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol. 1954 Nov 20;38(2):225–243. [PMC free article] [PubMed] [Google Scholar]
  24. Schiff P. B., Horwitz S. B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1561–1565. doi: 10.1073/pnas.77.3.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Small J. V. Organization of actin in the leading edge of cultured cells: influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks. J Cell Biol. 1981 Dec;91(3 Pt 1):695–705. doi: 10.1083/jcb.91.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tait J. F., Frieden C. Polymerization and gelation of actin studied by fluorescence photobleaching recovery. Biochemistry. 1982 Jul 20;21(15):3666–3674. doi: 10.1021/bi00258a022. [DOI] [PubMed] [Google Scholar]
  27. Wang E., Goldman R. D. Functions of cytoplasmic fibers in intracellular movements in BHK-21 cells. J Cell Biol. 1978 Dec;79(3):708–726. doi: 10.1083/jcb.79.3.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wang Y. L., Lanni F., McNeil P. L., Ware B. R., Taylor D. L. Mobility of cytoplasmic and membrane-associated actin in living cells. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4660–4664. doi: 10.1073/pnas.79.15.4660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Willingham M. C., Pastan I. The visualization of fluorescent proteins in living cells by video intensification microscopy (VIM). Cell. 1978 Mar;13(3):501–507. doi: 10.1016/0092-8674(78)90323-9. [DOI] [PubMed] [Google Scholar]
  30. Wojcieszyn J. W., Schlegel R. A., Jacobson K. A. Measurements of the diffusion of macromolecules injected into the cytoplasm of living cells. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):39–44. doi: 10.1101/sqb.1982.046.01.007. [DOI] [PubMed] [Google Scholar]
  31. Wojcieszyn J. W., Schlegel R. A., Lumley-Sapanski K., Jacobson K. A. Studies on the mechanism of polyethylene glycol-mediated cell fusion using fluorescent membrane and cytoplasmic probes. J Cell Biol. 1983 Jan;96(1):151–159. doi: 10.1083/jcb.96.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wojcieszyn J. W., Schlegel R. A., Wu E. S., Jacobson K. A. Diffusion of injected macromolecules within the cytoplasm of living cells. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4407–4410. doi: 10.1073/pnas.78.7.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wolosewick J. J., Porter K. R. Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality. J Cell Biol. 1979 Jul;82(1):114–139. doi: 10.1083/jcb.82.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES