Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Nov;81(21):6866–6870. doi: 10.1073/pnas.81.21.6866

Isolation and sequencing of two cerebellum-specific peptides

J Randall Slemmon *, Russell Blacher , Waleed Danho , James L Hempstead *, James I Morgan *,§
PMCID: PMC392033  PMID: 16593526

Abstract

By comparing the HPLC elution profiles of peptides isolated from different brain regions, two cerebellum-specific species have been identified. The peptides were isolated by sequential chromatography on reverse phase, followed by ion-pairing HPLC using alkane sulfates as pairing reagents. The sequences of both peptides have been determined by gasphase Edman degradation and carboxypeptidase Y analysis and were confirmed by synthesis. The larger peptide, termed cerebellin, is a hexadecamer of primary amino acid sequence NH2-Ser-Gly-Ser-Ala-Lys-Val-Ala-Phe-Ser-Ala-Ile-Arg-Ser-Thr-Asn-His- OH. The second peptide is a pentadecamer with a primary sequence identical to residues 2-16 of cerebellin, the nomenclature of which is des-Ser1-cerebellin. Subcellular fractionation of cerebellum followed by ion-pairing HPLC analysis shows that both cerebellin and des-Ser1-cerebellin are enriched between 2.5- and 4-fold in the P2 crude synaptosomal fraction, suggesting their sequestration in some subcellular particle in vivo.

Keywords: endogenous peptide analysis, neural markers, synaptosomes

Full text

PDF
6866

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnstable C. J. Monoclonal antibodies which recognize different cell types in the rat retina. Nature. 1980 Jul 17;286(5770):231–235. doi: 10.1038/286231a0. [DOI] [PubMed] [Google Scholar]
  2. Böhlen P., Stein S., Stone J., Udenfriend S. Automatic Monitoring of primary amines in preparative column effluents with fluorescamine. Anal Biochem. 1975 Aug;67(2):438–445. doi: 10.1016/0003-2697(75)90316-4. [DOI] [PubMed] [Google Scholar]
  3. Goodall G. J., Hempstead J. L., Morgan J. I. Production and characterization of antibodies to thymosin beta 4. J Immunol. 1983 Aug;131(2):821–825. [PubMed] [Google Scholar]
  4. Hajós F., Tapia R., Wilkin G., Johnson A. L., Balázs R. Subcellular fractionation of rat cerebellum: an electron microscopic and biochemical investigation. I. Preservation of large fragments of the cerebellar glomeruli. Brain Res. 1974 Apr 19;70(2):261–279. doi: 10.1016/0006-8993(74)90316-3. [DOI] [PubMed] [Google Scholar]
  5. Hannappel E., Davoust S., Horecker B. L. Isolation of peptides from calf thymus. Biochem Biophys Res Commun. 1982 Jan 15;104(1):266–271. doi: 10.1016/0006-291x(82)91969-6. [DOI] [PubMed] [Google Scholar]
  6. Hannappel E., Davoust S., Horecker B. L. Thymosins beta 8 and beta 9: two new peptides isolated from calf thymus homologous to thymosin beta 4. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1708–1711. doi: 10.1073/pnas.79.6.1708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hannappel E., Xu G. J., Morgan J., Hempstead J., Horecker B. L. Thymosin beta 4: a ubiquitous peptide in rat and mouse tissues. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2172–2175. doi: 10.1073/pnas.79.7.2172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hawke D., Yuan P. M., Shively J. E. Microsequence analysis of peptides and proteins. II. Separation of amino acid phenylthiohydantoin derivatives by high-performance liquid chromatography on octadecylsilane supports. Anal Biochem. 1982 Mar 1;120(2):302–311. doi: 10.1016/0003-2697(82)90351-7. [DOI] [PubMed] [Google Scholar]
  9. Hunkapiller M. W., Hood L. E. Direct microsequence analysis of polypeptides using an improved sequenator, a nonprotein carrier (polybrene), and high pressure liquid chromatography. Biochemistry. 1978 May 30;17(11):2124–2133. doi: 10.1021/bi00604a016. [DOI] [PubMed] [Google Scholar]
  10. Kenny C., Moschera J. A., Stein S. Purification of human fibroblast interferon produced in the absence of serum by Cibacron Blue F3GA-Agarose and high-performance liquid chromatography. Methods Enzymol. 1981;78(Pt A):435–447. doi: 10.1016/0076-6879(81)78154-0. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Margolis F. L. A brain protein unique to the olfactory bulb. Proc Natl Acad Sci U S A. 1972 May;69(5):1221–1224. doi: 10.1073/pnas.69.5.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McKay R. D., Hockfield S. J. Monoclonal antibodies distinguish antigenically discrete neuronal types in the vertebrate central nervous system. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6747–6751. doi: 10.1073/pnas.79.21.6747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Raff M. C., Fields K. L., Hakomori S. I., Mirsky R., Pruss R. M., Winter J. Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res. 1979 Oct 5;174(2):283–308. doi: 10.1016/0006-8993(79)90851-5. [DOI] [PubMed] [Google Scholar]
  15. Rochel S., Lichtstein D., Blume A. J., Margolis F. L. Membrane potential of olfactory bulb synaptosomal fractions: characterization with the lipophilic cation tetraphenylphosphonium. J Neurosci. 1981 Oct;1(10):1180–1192. doi: 10.1523/JNEUROSCI.01-10-01180.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shively J. E., Hawke D., Jones B. N. Microsequence analysis of peptides and proteins. III. Artifacts and the effects of impurities on analysis. Anal Biochem. 1982 Mar 1;120(2):312–312. doi: 10.1016/0003-2697(82)90352-9. [DOI] [PubMed] [Google Scholar]
  17. Stein S., Brink L. Amino acid analysis of proteins and peptides at the picomole level: the fluorescamine amino acid analyzer. Methods Enzymol. 1981;79(Pt B):20–25. doi: 10.1016/s0076-6879(81)79008-6. [DOI] [PubMed] [Google Scholar]
  18. Stein S., Böhlen P., Stone J., Dairman W., Udenfriend S. Amino acid analysis with fluorescamine at the picomole level. Arch Biochem Biophys. 1973 Mar;155(1):202–212. doi: 10.1016/s0003-9861(73)80022-0. [DOI] [PubMed] [Google Scholar]
  19. Sutcliffe J. G., Milner R. J., Shinnick T. M., Bloom F. E. Identifying the protein products of brain-specific genes with antibodies to chemically synthesized peptides. Cell. 1983 Jul;33(3):671–682. doi: 10.1016/0092-8674(83)90010-7. [DOI] [PubMed] [Google Scholar]
  20. Trisler G. D., Schneider M. D., Nirenberg M. A topographic gradient of molecules in retina can be used to identify neuron position. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2145–2149. doi: 10.1073/pnas.78.4.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Xu G. J., Hannappel E., Morgan J., Hempstead J., Horecker B. L. Synthesis of thymosin beta 4 by peritoneal macrophages and adherent spleen cells. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4006–4009. doi: 10.1073/pnas.79.13.4006. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES