Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Nov;81(21):6890–6893. doi: 10.1073/pnas.81.21.6890

Is ATP a central synaptic mediator for certain primary afferent fibers from mammalian skin?

R E Fyffe, E R Perl
PMCID: PMC392038  PMID: 6593733

Abstract

The possibility that ATP acts as a synaptic mediator at the central terminals of primary afferent fibers was examined by applying it iontophoretically to neurons of the outer layers of the cat spinal cord in vivo. ATP proved to be selectively excitatory for a limited subset of spinal neurons. Those units consistently excited by ATP iontophoresis with very small currents (2-15 nA) responded to gentle mechanical stimulation of the skin and usually evidenced excitatory input from unmyelinated primary afferent fibers. Most units excited by ATP were specifically mechanoreceptive; a few neurons receiving excitatory input from both low-threshold mechanoreceptors and nociceptors also responded to ATP. Selectively nocireceptive neurons were unresponsive. Generally, the mechanoreceptive neurons excited by ATP were located in the deeper substantia gelatinosa or in the immediately adjacent nucleus proprius of the dorsal horn. The results suggest the presence of a purinergic excitatory receptor on central neurons receiving excitatory projection from tactile mechanoreceptors with fine-diameter afferent fibers and are consistent with the possibility that an ATP-like agent may mediate central synaptic excitation for this set of sense organs.

Full text

PDF
6890

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bessou P., Burgess P. R., Perl E. R., Taylor C. B. Dynamic properties of mechanoreceptors with unmyelinated (C) fibers. J Neurophysiol. 1971 Jan;34(1):116–131. doi: 10.1152/jn.1971.34.1.116. [DOI] [PubMed] [Google Scholar]
  2. Bessou P., Perl E. R. Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol. 1969 Nov;32(6):1025–1043. doi: 10.1152/jn.1969.32.6.1025. [DOI] [PubMed] [Google Scholar]
  3. Burgess P. R., Perl E. R. Myelinated afferent fibres responding specifically to noxious stimulation of the skin. J Physiol. 1967 Jun;190(3):541–562. doi: 10.1113/jphysiol.1967.sp008227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burnstock G. Review lecture. Neurotransmitters and trophic factors in the autonomic nervous system. J Physiol. 1981;313:1–35. doi: 10.1113/jphysiol.1981.sp013648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Christensen B. N., Perl E. R. Spinal neurons specifically excited by noxious or thermal stimuli: marginal zone of the dorsal horn. J Neurophysiol. 1970 Mar;33(2):293–307. doi: 10.1152/jn.1970.33.2.293. [DOI] [PubMed] [Google Scholar]
  6. Dodd J., Jahr C. E., Hamilton P. N., Heath M. J., Matthew W. D., Jessell T. M. Cytochemical and physiological properties of sensory and dorsal horn neurons that transmit cutaneous sensation. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):685–695. doi: 10.1101/sqb.1983.048.01.072. [DOI] [PubMed] [Google Scholar]
  7. Dowdall M. J., Boyne A. F., Whittaker V. P. Adenosine triphosphate. A constituent of cholinergic synaptic vesicles. Biochem J. 1974 Apr;140(1):1–12. doi: 10.1042/bj1400001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gerebtzoff M. A., Maeda T. Caractères et localisation histochimique d'un isoenzyme fluoresistant de la phosphatase acide dans la moelle épinière du rat. C R Seances Soc Biol Fil. 1969 May;162(11):2032–2035. [PubMed] [Google Scholar]
  9. HILLARP N. A. Adenosinephosphates and inorganic phosphate in the adrenaline and noradrenaline containing granules of the adrenal medulla. Acta Physiol Scand. 1958 Jun 2;42(3-4):321–332. doi: 10.1111/j.1748-1716.1958.tb01566.x. [DOI] [PubMed] [Google Scholar]
  10. HOLTON F. A., HOLTON P. The capillary dilator substances in dry powders of spinal roots; a possible role of adenosine triphosphate in chemical transmission from nerve endings. J Physiol. 1954 Oct 28;126(1):124–140. doi: 10.1113/jphysiol.1954.sp005198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HUNT C. C., KUNO M. Background discharge and evoked responses of spinal interneurones. J Physiol. 1959 Sep 2;147:364–384. doi: 10.1113/jphysiol.1959.sp006249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hökfelt T., Elde R., Johansson O., Luft R., Nilsson G., Arimura A. Immunohistochemical evidence for separate populations of somatostatin-containing and substance P-containing primary afferent neurons in the rat. Neuroscience. 1976;1(2):131–136. doi: 10.1016/0306-4522(76)90008-7. [DOI] [PubMed] [Google Scholar]
  13. Jahr C. E., Jessell T. M. ATP excites a subpopulation of rat dorsal horn neurones. Nature. 1983 Aug 25;304(5928):730–733. doi: 10.1038/304730a0. [DOI] [PubMed] [Google Scholar]
  14. Knyihár-Csillik E., Csillik B. FRAP: histochemistry of the primary nociceptive neuron. Prog Histochem Cytochem. 1981;14(1):1–137. doi: 10.1016/s0079-6336(81)80008-3. [DOI] [PubMed] [Google Scholar]
  15. Knyihár E. Fluoride-resistant acid phosphatase system of nociceptive dorsal root afferents. Experientia. 1971 Oct 15;27(10):1205–1207. doi: 10.1007/BF02286931. [DOI] [PubMed] [Google Scholar]
  16. Kumazawa T., Perl E. R. Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: indications of their place in dorsal horn functional organization. J Comp Neurol. 1978 Feb 1;177(3):417–434. doi: 10.1002/cne.901770305. [DOI] [PubMed] [Google Scholar]
  17. Kumazawa T., Perl E. R. Primate cutaneous sensory units with unmyelinated (C) afferent fibers. J Neurophysiol. 1977 Nov;40(6):1325–1338. doi: 10.1152/jn.1977.40.6.1325. [DOI] [PubMed] [Google Scholar]
  18. Light A. R., Perl E. R. Reexamination of the dorsal root projection to the spinal dorsal horn including observations on the differential termination of coarse and fine fibers. J Comp Neurol. 1979 Jul 15;186(2):117–131. doi: 10.1002/cne.901860202. [DOI] [PubMed] [Google Scholar]
  19. Light A. R., Trevino D. L., Perl E. R. Morphological features of functionally defined neurons in the marginal zone and substantia gelatinosa of the spinal dorsal horn. J Comp Neurol. 1979 Jul 15;186(2):151–171. doi: 10.1002/cne.901860204. [DOI] [PubMed] [Google Scholar]
  20. Lynn B., Carpenter S. E. Primary afferent units from the hairy skin of the rat hind limb. Brain Res. 1982 Apr 22;238(1):29–43. doi: 10.1016/0006-8993(82)90768-5. [DOI] [PubMed] [Google Scholar]
  21. PEARSON A. A. Role of gelatinous substance of spinal cord in conduction of pain. AMA Arch Neurol Psychiatry. 1952 Oct;68(4):515–529. doi: 10.1001/archneurpsyc.1952.02320220092011. [DOI] [PubMed] [Google Scholar]
  22. SCHUMANN H. J. Die Wirkung von Insulin und Reserpin auf den Adrenalin- und ATP-Gehalt der chromaffinen Granula des Nebennierenmarks. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1958;233(3):237–249. [PubMed] [Google Scholar]
  23. Salt T. E., Hill R. G. Excitation of single sensory neurones in the rat caudal trigeminal nucleus by iontophoretically applied adenosine 5'-triphosphate. Neurosci Lett. 1983 Jan 31;35(1):53–57. doi: 10.1016/0304-3940(83)90526-8. [DOI] [PubMed] [Google Scholar]
  24. Zimmermann H. Turnover of adenine nucleotides in cholinergic synaptic vesicles of the Torpedo electric organ. Neuroscience. 1978;3(9):827–836. doi: 10.1016/0306-4522(78)90035-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES