Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Nov;81(22):7221–7223. doi: 10.1073/pnas.81.22.7221

Denervation of rat adrenal glands markedly increases preproenkephalin mRNA.

D L Kilpatrick, R D Howells, G Fleminger, S Udenfriend
PMCID: PMC392110  PMID: 6594691

Abstract

The effect of denervation on the expression of rat adrenal proenkephalin has been examined. Following splanchnicectomy there was a several-fold increase in the steady-state levels of preproenkephalin mRNA, which became maximal after 24-48 hr (greater than 10-fold). These results indicate that the previously observed increase in rat adrenal enkephalin-containing peptides following denervation occurs entirely by a pretranslational mechanism. The increase in preproenkephalin mRNA was accompanied by a 50-75% decrease in rat adrenal poly(A)+ RNA. Neural input thus exerts a profound trophic influence on proenkephalin gene expression and RNA metabolism in rat adrenals.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bohn M. C., Kessler J. A., Golightly L., Black I. B. Appearance of enkephalin-immunoreactivity in rat adrenal medulla following treatment with nicotinic antagonists or reserpine. Cell Tissue Res. 1983;231(3):469–479. doi: 10.1007/BF00218106. [DOI] [PubMed] [Google Scholar]
  2. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  3. Comb M., Seeburg P. H., Adelman J., Eiden L., Herbert E. Primary structure of the human Met- and Leu-enkephalin precursor and its mRNA. Nature. 1982 Feb 25;295(5851):663–666. doi: 10.1038/295663a0. [DOI] [PubMed] [Google Scholar]
  4. Fleminger G., Lahm H. W., Udenfriend S. Changes in rat adrenal catecholamines and proenkephalin metabolism after denervation. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3587–3590. doi: 10.1073/pnas.81.11.3587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Guidotti A., Costa E. Commentary: Trans-synaptic regulation of typrosine 3-mono-oxygenase biosynthesis in rat adrenal medulla. Biochem Pharmacol. 1977 May 1;26(9):817–823. doi: 10.1016/0006-2952(77)90393-8. [DOI] [PubMed] [Google Scholar]
  6. Lewis R. V., Stern A. S., Kilpatrick D. L., Gerber L. D., Rossier J., Stein S., Udenfriend S. Marked increases in large enkephalin-containing polypeptides in the rat adrenal gland following denervation. J Neurosci. 1981 Jan;1(1):80–82. doi: 10.1523/JNEUROSCI.01-01-00080.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Matsuda R., Spector D., Strohman R. C. Denervated skeletal muscle displays discoordinate regulation for the synthesis of several myofibrillar proteins. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1122–1125. doi: 10.1073/pnas.81.4.1122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Metafora S., Felsani A., Cotrufo R., Tajana G. F., Di Iorio G., Del Rio A., De Prisco P. P., Esposito V. Neural control of gene expression in the skeletal muscle fibre: the nature of the lesion in the muscular protein-synthesizing machinery following denervation. Proc R Soc Lond B Biol Sci. 1980 Aug 13;209(1175):239–255. doi: 10.1098/rspb.1980.0093. [DOI] [PubMed] [Google Scholar]
  9. Norgard M. V., Tocci M. J., Monahan J. J. On the cloning of eukaryotic total poly(A)-RNA populations in Escherichia coli. J Biol Chem. 1980 Aug 25;255(16):7665–7672. [PubMed] [Google Scholar]
  10. Schultzberg M., Lundberg J. M., Hökfelt T., Terenius L., Brandt J., Elde R. P., Goldstein M. Enkephalin-like immunoreactivity in gland cells and nerve terminals of the adrenal medulla. Neuroscience. 1978;3(12):1169–1186. doi: 10.1016/0306-4522(78)90137-9. [DOI] [PubMed] [Google Scholar]
  11. Shackelford J. E., Lebherz H. G. Regulation of apolipoprotein A1 synthesis in avian muscles. J Biol Chem. 1983 Dec 25;258(24):14829–14833. [PubMed] [Google Scholar]
  12. Thoenen H., Mueller R. A., Axelrod J. Trans-synaptic induction of adrenal tyrosine hydroxylase. J Pharmacol Exp Ther. 1969 Oct;169(2):249–254. [PubMed] [Google Scholar]
  13. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Vytásek R. A sensitive fluorometric assay for the determination of DNA. Anal Biochem. 1982 Mar 1;120(2):243–248. doi: 10.1016/0003-2697(82)90342-6. [DOI] [PubMed] [Google Scholar]
  15. White B. A., Bancroft F. C. Cytoplasmic dot hybridization. Simple analysis of relative mRNA levels in multiple small cell or tissue samples. J Biol Chem. 1982 Aug 10;257(15):8569–8572. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES