Abstract
We have previously shown that chelated copper stimulates the release of luteinizing hormone-releasing hormone (LHRH) from isolated hypothalamic granules. In this study, we wished to ascertain if chelated copper acts on hypothalamic neurons to stimulate LHRH release and, if so, what is the ligand specificity of this interaction. An in vitro system of explants of the median eminence area (MEA) was established and characterized. MEA explants were exposed for 15 min to 50 microM copper, and then they were incubated for 75 min in copper-free medium. Copper led to a transient increase in the rate of LHRH release; the maximal rate was attained 15 min after transfer of the MEA to copper-free medium. In addition, we found that copper complexed to histidine (Cu-His), but not ionic copper, stimulated LHRH release, the magnitude of which was dependent on the dose of Cu-His. The chelator specificity for Cu complex action was such that Cu-His stimulated LHRH release 4.9-fold and Cu-Cys stimulated release 2.5-fold, whereas neither Cu-Thr, Cu-Gly-His-Lys, Cu-bovine serum albumin, nor ceruloplasmin stimulated LHRH release. Based on these results and those of others indicating that the concentration of copper in hypothalamic axonal terminals is 1-2 orders of magnitude greater than plasma, we propose that copper released in the vicinity of the LHRH neurons interacts with specific sites on the LHRH axonal terminals, which leads to release of the peptide.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barnea A., Cho G. Evidence that copper-amino acid complexes are potent stimulators of the release of luteinizing hormone-releasing hormone from isolated hypothalamic granules. Endocrinology. 1984 Sep;115(3):936–943. doi: 10.1210/endo-115-3-936. [DOI] [PubMed] [Google Scholar]
- Barnea A., Oliver C., Porter J. C. Subcellular localization of alpha-melanocyte-stimulating hormone in the rat hypothalamus. J Neurochem. 1977 Oct;29(4):619–624. doi: 10.1111/j.1471-4159.1977.tb07777.x. [DOI] [PubMed] [Google Scholar]
- Burrows G. H., Barnea A. Copper stimulates the release of luteinizing hormone releasing hormone from isolated hypothalamic granules. Endocrinology. 1982 Apr;110(4):1456–1458. doi: 10.1210/endo-110-4-1456. [DOI] [PubMed] [Google Scholar]
- Colburn R. W., Maas J. W. Adenosine triphosphate--metal--norepinephrine ternary complexes and catecholamine binding. Nature. 1965 Oct 2;208(5005):37–41. doi: 10.1038/208037a0. [DOI] [PubMed] [Google Scholar]
- Dolais-Kitabgi J., Perlman R. L. The stimulation of cathecholamine release from chromaffin granules by valinomycin. Mol Pharmacol. 1975 Nov;11(6):745–750. [PubMed] [Google Scholar]
- Donaldson J., Pierre T. S., Minnich J. L., Barbeau A. Determination of Na + , K + , Mg 2+ , Cu 2+ , Zn 2+ , and Mn 2+ in rat brain regions. Can J Biochem. 1973 Jan;51(1):87–92. doi: 10.1139/o73-010. [DOI] [PubMed] [Google Scholar]
- Douglas W. W., Poisner A. M., Rubin R. P. Efflux of adenine nucleotides from perfused adrenal glands exposed to nicotine and other chromaffin cell stimulants. J Physiol. 1965 Jul;179(1):130–137. doi: 10.1113/jphysiol.1965.sp007652. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eipper B. A., Mains R. E., Glembotski C. C. Identification in pituitary tissue of a peptide alpha-amidation activity that acts on glycine-extended peptides and requires molecular oxygen, copper, and ascorbic acid. Proc Natl Acad Sci U S A. 1983 Aug;80(16):5144–5148. doi: 10.1073/pnas.80.16.5144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldsmith P. C., Ganong W. F. Ultrastructural localization of luteinizing hormone-releasing hormone in the median eminence of the rat. Brain Res. 1975 Oct 31;97(2):181–193. doi: 10.1016/0006-8993(75)90444-8. [DOI] [PubMed] [Google Scholar]
- Harris D. I., Sass-Kortsak A. The influence of amino acids on copper uptake by rat liver slices. J Clin Invest. 1967 Apr;46(4):659–667. doi: 10.1172/JCI105567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiroi M., Sugita S., Suzuki M. Ovulation induced by implantation of cupric sulfate into the brain of the rabbit. Endocrinology. 1965 Dec;77(6):963–967. doi: 10.1210/endo-77-6-963. [DOI] [PubMed] [Google Scholar]
- Jönsson A. C., Nilsson S. Effects of pH, temperature and Cu2+ on the activity of dopamine-beta-hydroxylase from the chromaffin tissue of the cod, Gadus morhua. Comp Biochem Physiol C. 1979;62C(1):5–8. doi: 10.1016/0306-4492(79)90093-5. [DOI] [PubMed] [Google Scholar]
- Konings F., De Potter W. The chromaffin granule - plasma membrane interaction as a model for exocytosis: quantitative release of the soluble granular content. Biochem Biophys Res Commun. 1982 Jan 15;104(1):254–258. doi: 10.1016/0006-291x(82)91967-2. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Levine M., Asher A., Pollard H., Zinder O. Ascorbic acid and catecholamine secretion from cultured chromaffin cells. J Biol Chem. 1983 Nov 10;258(21):13111–13115. [PubMed] [Google Scholar]
- Maas J. W., Colburn R. W. Co-ordination chemistry and membrane function with particular reference to the synapse and catecholamine transport. Nature. 1965 Oct 2;208(5005):41–46. doi: 10.1038/208041a0. [DOI] [PubMed] [Google Scholar]
- Mains R. E., Glembotski C. C., Eipper B. A. Peptide alpha-amidation activity in mouse anterior pituitary AtT-20 cell granules: properties and secretion. Endocrinology. 1984 May;114(5):1522–1530. doi: 10.1210/endo-114-5-1522. [DOI] [PubMed] [Google Scholar]
- McGahan M. C., Bito L. Z. Determination of copper concentration in blood plasma and in ocular and cerebrospinal fluids using graphite furnace atomic absorption spectroscopy. Anal Biochem. 1983 Nov;135(1):186–192. doi: 10.1016/0003-2697(83)90749-2. [DOI] [PubMed] [Google Scholar]
- Merriam G. R., Nunnelley L. L., Trish J. W., Naftolin F. Sex-related and cyclic variation of trace elements in rat hypothalamus and pituitary. Brain Res. 1979 Aug 10;171(3):503–510. doi: 10.1016/0006-8993(79)91054-0. [DOI] [PubMed] [Google Scholar]
- Nalbandyan R. M. Copper in brain. Neurochem Res. 1983 Oct;8(10):1211–1232. doi: 10.1007/BF00963993. [DOI] [PubMed] [Google Scholar]
- Negro-Vilar A., Ojeda S. R., McCann S. M. Catecholaminergic modulation of luteinizing hormone-releasing hormone release by median eminence terminals in vitro. Endocrinology. 1979 Jun;104(6):1749–1757. doi: 10.1210/endo-104-6-1749. [DOI] [PubMed] [Google Scholar]
- Nett T. M., Akbar A. M., Niswender G. D., Hedlund M. T., White W. F. A radioimmunoassay for gonadotropin-releasing hormone (Gn-RH) in serum. J Clin Endocrinol Metab. 1973 May;36(5):880–885. doi: 10.1210/jcem-36-5-880. [DOI] [PubMed] [Google Scholar]
- Neumann P. Z., Silverberg M. Active copper transport in mammalian tissues--a possible role in Wilson's disease. Nature. 1966 Apr 23;210(5034):414–416. doi: 10.1038/210414a0. [DOI] [PubMed] [Google Scholar]
- Oja S. S., Kontro P. Oxidation of hypotaurine in vitro by mouse liver and brain tissues. Biochim Biophys Acta. 1981 Nov 5;677(3-4):350–357. doi: 10.1016/0304-4165(81)90246-4. [DOI] [PubMed] [Google Scholar]
- Ojeda S. R., Negro-Vilar A., McCann S. M. Evidence for involvement of alpha-adrenergic receptors in norepinephrine-induced prostaglandin E2 and luteinizing hormone-releasing hormone release from the median eminence. Endocrinology. 1982 Feb;110(2):409–412. doi: 10.1210/endo-110-2-409. [DOI] [PubMed] [Google Scholar]
- Ojeda S. R., Negro-Vilar A., McCann S. M. Release of prostaglandin Es by hypothalamic tissue: evidence for their involvement in catecholamine-induced luteinizing hormone-releasing hormone release. Endocrinology. 1979 Mar;104(3):617–624. doi: 10.1210/endo-104-3-617. [DOI] [PubMed] [Google Scholar]
- Osterberg R. Physiology and pharmacology of copper. Pharmacol Ther. 1980;9(1):121–146. doi: 10.1016/0163-7258(80)90019-4. [DOI] [PubMed] [Google Scholar]
- Palkovits M., Arimura A., Brownstein M., Schally A. V., Saavedra J. M. Luteinizing hormone-releasing hormone (LH-RH) content of the hypothalamic nuclei in rat. Endocrinology. 1974 Aug;95(2):554–558. doi: 10.1210/endo-95-2-554. [DOI] [PubMed] [Google Scholar]
- Phillips J. H., Allison Y. P., Morris S. J. The distribution of calcium, magnesium, copper and iron in the bovine adrenal medulla. Neuroscience. 1977;2(1):147–152. doi: 10.1016/0306-4522(77)90075-6. [DOI] [PubMed] [Google Scholar]
- Rajan K. S., Colburn R. W., Davis J. M. Distribution of metal ions in the subcellular fractions of several rat brain areas. Life Sci. 1976 Feb 15;18(4):423–431. doi: 10.1016/0024-3205(76)90220-4. [DOI] [PubMed] [Google Scholar]
- Rice G. E., Barnea A. A possible role for copper-mediated oxidation of thiols in the regulation of the release of luteinizing hormone releasing hormone from isolated hypothalamic granules. J Neurochem. 1983 Dec;41(6):1672–1679. doi: 10.1111/j.1471-4159.1983.tb00879.x. [DOI] [PubMed] [Google Scholar]
- Rice G. E., Cho G., Barnea A. Aging-related reduced release of LH-releasing hormone from hypothalamic granules. Neurobiol Aging. 1983 Fall;4(3):217–222. doi: 10.1016/0197-4580(83)90023-4. [DOI] [PubMed] [Google Scholar]
- Samson W. K., McCann S. M., Chud L., Dudley C. A., Moss R. L. Intra- and extrahypothalamic luteinizing hormone-releasing hormone (LHRH) distribution in the rat with special reference to mesencephalic sites which contain both LHRH and single neurons responsive to LHRH. Neuroendocrinology. 1980 Jul;31(1):66–72. doi: 10.1159/000123052. [DOI] [PubMed] [Google Scholar]
- Sétáló G., Vigh S., Schally A. V., Arimura A., Flerkó B. LH-RH-containing neural elements in the rat hypothalamus. Endocrinology. 1975 Jan;96(1):135–142. doi: 10.1210/endo-96-1-135. [DOI] [PubMed] [Google Scholar]
- Tsou R. C., Dailey R. A., McLanahan C. S., Parent A. D., Tindall G. T., Neill J. D. Luteinizing hormone releasing hormone (LHRH) levels in pituitary stalk plasma during the preovulatory gonadotropin surge of rabbits. Endocrinology. 1977 Aug;101(2):534–539. doi: 10.1210/endo-101-2-534. [DOI] [PubMed] [Google Scholar]
- Werringloer J., Kawano S., Chacos N., Estabrook R. W. The interaction of divalent copper and the microsomal electron transport system. A re-examination of the effects of copper chelates on the function of cytochrome P-450. J Biol Chem. 1979 Dec 10;254(23):11839–11846. [PubMed] [Google Scholar]
