Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 May 28;93(11):5203–5207. doi: 10.1073/pnas.93.11.5203

Quantal acetylcholine release induced by mediatophore transfection.

J Falk-Vairant 1, P Corrèges 1, L Eder-Colli 1, N Salem 1, E Roulet 1, A Bloc 1, F Meunier 1, B Lesbats 1, F Loctin 1, M Synguelakis 1, M Israel 1, Y Dunant 1
PMCID: PMC39222  PMID: 8643553

Abstract

Mediatophore is a protein of approximately 200 kDa able to translocate acetylcholine in response to calcium. It was purified from the presynaptic plasma membranes of the electric organ nerve terminals. Mediatophore is a homooligomer of a 16-kDa subunit, homologous to the proteolipid of V-ATPase. Cells of the N18TG-2 neuronal line are not able to produce quantal acetylcholine release. We show here that transfection of N18TG-2 cells with a plasmid encoding the mediatophore subunit restored calcium-dependent release. The essential feature of such a release was its quantal nature, similar to what is observed in situ in cholinergic synapses from which mediatophore was purified.

Full text

PDF
5203

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berrard S., Varoqui H., Cervini R., Israël M., Mallet J., Diebler M. F. Coregulation of two embedded gene products, choline acetyltransferase and the vesicular acetylcholine transporter. J Neurochem. 1995 Aug;65(2):939–942. doi: 10.1046/j.1471-4159.1995.65020939.x. [DOI] [PubMed] [Google Scholar]
  2. Birman S., Meunier F. M., Lesbats B., Le Caer J. P., Rossier J., Israël M. A 15 kDa proteolipid found in mediatophore preparations from Torpedo electric organ presents high sequence homology with the bovine chromaffin granule protonophore. FEBS Lett. 1990 Feb 26;261(2):303–306. doi: 10.1016/0014-5793(90)80577-6. [DOI] [PubMed] [Google Scholar]
  3. Brochier G., Israël M., Lesbats B. Immunolabelling of the presynaptic membrane of Torpedo electric organ nerve terminals with an antiserum towards the acetylcholine releasing protein mediatophore. Biol Cell. 1993;78(3):145–154. doi: 10.1016/0248-4900(93)90125-x. [DOI] [PubMed] [Google Scholar]
  4. Cavalli A., Dunant Y., Leroy C., Meunier F. M., Morel N., Israël M. Antisense probes against mediatophore block transmitter release in oocytes primed with neuronal mRNAs. Eur J Neurosci. 1993 Nov 1;5(11):1539–1544. doi: 10.1111/j.1460-9568.1993.tb00223.x. [DOI] [PubMed] [Google Scholar]
  5. Cavalli A., Eder-Colli L., Dunant Y., Loctin F., Morel N. Release of acetylcholine by Xenopus oocytes injected with mRNAs from cholinergic neurons. EMBO J. 1991 Jul;10(7):1671–1675. doi: 10.1002/j.1460-2075.1991.tb07690.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dunant Y., Israël M. Ultrastructure and biophysics of acetylcholine release: central role of the mediatophore. J Physiol Paris. 1993;87(3):179–192. doi: 10.1016/0928-4257(93)90029-s. [DOI] [PubMed] [Google Scholar]
  7. Erickson J. D., Varoqui H., Schäfer M. K., Modi W., Diebler M. F., Weihe E., Rand J., Eiden L. E., Bonner T. I., Usdin T. B. Functional identification of a vesicular acetylcholine transporter and its expression from a "cholinergic" gene locus. J Biol Chem. 1994 Sep 2;269(35):21929–21932. [PubMed] [Google Scholar]
  8. Evers J., Laser M., Sun Y. A., Xie Z. P., Poo M. M. Studies of nerve-muscle interactions in Xenopus cell culture: analysis of early synaptic currents. J Neurosci. 1989 May;9(5):1523–1539. doi: 10.1523/JNEUROSCI.09-05-01523.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Finbow M. E., Pitts J. D., Goldstein D. J., Schlegel R., Findlay J. B. The E5 oncoprotein target: a 16-kDa channel-forming protein with diverse functions. Mol Carcinog. 1991;4(6):441–444. doi: 10.1002/mc.2940040605. [DOI] [PubMed] [Google Scholar]
  10. Girod R., Corrèges P., Jacquet J., Dunant Y. Space and time characteristics of transmitter release at the nerve-electroplaque junction of Torpedo. J Physiol. 1993 Nov;471:129–157. doi: 10.1113/jphysiol.1993.sp019894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Girod R., Eder-Colli L., Medilanski J., Dunant Y., Tabti N., Poo M. M. Pulsatile release of acetylcholine by nerve terminals (synaptosomes) isolated from Torpedo electric organ. J Physiol. 1992 May;450:325–340. doi: 10.1113/jphysiol.1992.sp019129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Israël M., Dunant Y. Acetylcholine release, from molecules to function. Prog Brain Res. 1993;98:219–233. doi: 10.1016/s0079-6123(08)62403-6. [DOI] [PubMed] [Google Scholar]
  13. Israël M., Lesbats B. Application to mammalian tissues of the chemiluminescent method for detecting acetylcholine. J Neurochem. 1982 Jul;39(1):248–250. doi: 10.1111/j.1471-4159.1982.tb04727.x. [DOI] [PubMed] [Google Scholar]
  14. Israël M., Lesbats B. Continuous determination by a chemiluminescent method of acetylcholine release and compartmentation in Torpedo electric organ synaptosomes. J Neurochem. 1981 Dec;37(6):1475–1483. doi: 10.1111/j.1471-4159.1981.tb06317.x. [DOI] [PubMed] [Google Scholar]
  15. Israël M., Lesbats B., Morel N., Manaranche R., Gulik-Krzywicki T., Dedieu J. C. Reconstitution of a functional synaptosomal membrane possessing the protein constituents involved in acetylcholine translocation. Proc Natl Acad Sci U S A. 1984 Jan;81(1):277–281. doi: 10.1073/pnas.81.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Israël M., Lesbats B., Synguelakis M., Joliot A. Acetylcholine accumulation and release by hybrid NG108-15, glioma and neuroblastoma cells--role of a 16kDa membrane protein in release. Neurochem Int. 1994 Aug;25(2):103–109. doi: 10.1016/0197-0186(94)90029-9. [DOI] [PubMed] [Google Scholar]
  17. Israël M., Morel N., Lesbats B., Birman S., Manaranche R. Purification of a presynaptic membrane protein that mediates a calcium-dependent translocation of acetylcholine. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9226–9230. doi: 10.1073/pnas.83.23.9226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kidokoro Y., Rohrbough J. Acetylcholine receptor channels in Xenopus myocyte culture; brief openings, brief closures and slow desensitization. J Physiol. 1990 Jun;425:227–244. doi: 10.1113/jphysiol.1990.sp018100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nelson N. Organellar proton-ATPases. Curr Opin Cell Biol. 1992 Aug;4(4):654–660. doi: 10.1016/0955-0674(92)90086-r. [DOI] [PubMed] [Google Scholar]
  20. Nirenberg M., Wilson S., Higashida H., Rotter A., Krueger K., Busis N., Ray R., Kenimer J. G., Adler M. Modulation of synapse formation by cyclic adenosine monophosphate. Science. 1983 Nov 18;222(4625):794–799. doi: 10.1126/science.6314503. [DOI] [PubMed] [Google Scholar]
  21. Siebert A., Lottspeich F., Nelson N., Betz H. Purification of the synaptic vesicle-binding protein physophilin. Identification as 39-kDa subunit of the vacuolar H(+)-ATPase. J Biol Chem. 1994 Nov 11;269(45):28329–28334. [PubMed] [Google Scholar]
  22. Südhof T. C. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature. 1995 Jun 22;375(6533):645–653. doi: 10.1038/375645a0. [DOI] [PubMed] [Google Scholar]
  23. Varoqui H., Diebler M. F., Meunier F. M., Rand J. B., Usdin T. B., Bonner T. I., Eiden L. E., Erickson J. D. Cloning and expression of the vesamicol binding protein from the marine ray Torpedo. Homology with the putative vesicular acetylcholine transporter UNC-17 from Caenorhabditis elegans. FEBS Lett. 1994 Mar 28;342(1):97–102. doi: 10.1016/0014-5793(94)80592-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES