Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Dec;81(24):7767–7771. doi: 10.1073/pnas.81.24.7767

Effects of pH on the structure and function of carboxypeptidase A: crystallographic studies.

G Shoham, D C Rees, W N Lipscomb
PMCID: PMC392233  PMID: 6595659

Abstract

High-resolution crystal structures are described for carboxypeptidase A (EC 3.4.17.1) in crystals grown at pH 8.5, 9.0, and 9.5 and compared with the structure at pH 7.5. The comparison shows that in the pH range of 7.5-9.5 the enzyme structure is practically unchanged, and, most importantly, that the flexible side chain of Tyr-248 remains exclusively in the "up" position, away from the Zn atom, throughout the pH range. There is no evidence for binding of Tyr-248 to Zn at any of these pH values. We conclude that the interaction of Tyr-248 with Zn is not an essential part of the mechanism of carboxypeptidase A and that its occurrence is an artifact of chemical modification of Tyr-248. It is also suggested that Tyr-248 is not uniquely associated with the observed high pK of the enzymatic hydrolysis.

Full text

PDF
7767

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALBERTY R. A., MASSEY V. On the interpretation of the pH variation of the maximum initial velocity of an enzyme-catalyzed reaction. Biochim Biophys Acta. 1954 Mar;13(3):347–353. doi: 10.1016/0006-3002(54)90340-6. [DOI] [PubMed] [Google Scholar]
  2. Auld D. S., Vallee B. L. Kinetics of carboxypeptidase A, pH and Temperature dependence of tripeptide hydrolysis. Biochemistry. 1971 Jul 20;10(15):2892–2897. doi: 10.1021/bi00791a015. [DOI] [PubMed] [Google Scholar]
  3. Auld D. S., Vallee B. L. Kinetics of carboxypeptidase A. The pH dependence of tripeptide hydrolysis catalyzed by zinc, cobalt, and manganese enzymes. Biochemistry. 1970 Oct 27;9(22):4352–4359. doi: 10.1021/bi00824a016. [DOI] [PubMed] [Google Scholar]
  4. Benedetti E., Morelli G., Némethy G., Scheraga H. A. Statistical and energetic analysis of side-chain conformations in oligopeptides. Int J Pept Protein Res. 1983 Jul;22(1):1–15. doi: 10.1111/j.1399-3011.1983.tb02062.x. [DOI] [PubMed] [Google Scholar]
  5. Bhat T. N., Sasisekharan V., Vijayan M. An analysis of side-chain conformation in proteins. Int J Pept Protein Res. 1979 Feb;13(2):170–184. doi: 10.1111/j.1399-3011.1979.tb01866.x. [DOI] [PubMed] [Google Scholar]
  6. Bunting J. W., Chu S. S. pH dependence of the hydrolysis of hippuric acid esters by carboxypeptidase A. Biochemistry. 1976 Jul 27;15(15):3237–3244. doi: 10.1021/bi00660a012. [DOI] [PubMed] [Google Scholar]
  7. Bunting J. W., Kabir S. H. The pH-dependence of the non-specific esterase activity of carboxypeptidase A. Biochim Biophys Acta. 1978 Nov 10;527(1):98–107. doi: 10.1016/0005-2744(78)90259-0. [DOI] [PubMed] [Google Scholar]
  8. COLEMAN J. E., VALLEE B. L. Metallocarboxypeptidases: stability constants and enzymatic characteristics. J Biol Chem. 1961 Aug;236:2244–2249. [PubMed] [Google Scholar]
  9. Carson F. W., Kaiser E. T. pH dependence of the hydrolysis of O-acetyl-L-mandelate catalyzed by carboxypeptidase A. A critical examination. J Am Chem Soc. 1966 Mar 20;88(6):1212–1223. doi: 10.1021/ja00958a024. [DOI] [PubMed] [Google Scholar]
  10. Cleland W. W. Determining the chemical mechanisms of enzyme-catalyzed reactions by kinetic studies. Adv Enzymol Relat Areas Mol Biol. 1977;45:273–387. doi: 10.1002/9780470122907.ch4. [DOI] [PubMed] [Google Scholar]
  11. Cueni L., Riordan J. F. Functional tyrosyl residues of carboxypeptidase A. The effect of protein structure on the reactivity of tyrosine-198. Biochemistry. 1978 May 16;17(10):1834–1842. doi: 10.1021/bi00603a005. [DOI] [PubMed] [Google Scholar]
  12. DIXON M. The effect of pH on the affinities of enzymes for substrates and inhibitors. Biochem J. 1953 Aug;55(1):161–170. doi: 10.1042/bj0550161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Glovsky J., Hall P. L., Kaiser E. T. On the action of carboxypeptidase A on ester substrates in alkaline solution. Biochem Biophys Res Commun. 1972 Apr 14;47(1):244–247. doi: 10.1016/s0006-291x(72)80034-2. [DOI] [PubMed] [Google Scholar]
  14. Hall P. L., Kaiser B. L., Kaiser E. T. pPH dependence and competitive product inhibition of the carboxypeptidase A catalyzed hydrolysis of O-(trans-cinnamoyl)-L-beta-phenyllactate. J Am Chem Soc. 1969 Jan 15;91(2):485–491. doi: 10.1021/ja01030a047. [DOI] [PubMed] [Google Scholar]
  15. Harrison L. W., Auld D. S., Vallee B. L. Intramolecular arsanilazotyrosine-248-Zn complex of carboxypeptidase A: a monitor of catalytic events. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3930–3933. doi: 10.1073/pnas.72.10.3930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Harrison L. W., Auld D. S., Vallee B. L. Intramolecular arsanilazotyrosine-248-Zn complex of carboxypeptidase A: a monitor of multiple conformational states in solution. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4356–4360. doi: 10.1073/pnas.72.11.4356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Janin J., Wodak S. Conformation of amino acid side-chains in proteins. J Mol Biol. 1978 Nov 5;125(3):357–386. doi: 10.1016/0022-2836(78)90408-4. [DOI] [PubMed] [Google Scholar]
  18. Johansen J. T., Livingston D. M., Vallee B. L. Chemical modification of carboxypeptidase A crystals. Azo coupling with tyrosine-248. Biochemistry. 1972 Jul 4;11(14):2584–2588. doi: 10.1021/bi00764a005. [DOI] [PubMed] [Google Scholar]
  19. Johansen J. T., Vallee B. L. Conformations of arsanilazotyrosine-248 carboxypeptidase A alpha, beta, gamma, comparison of crystals and solution. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2006–2010. doi: 10.1073/pnas.70.7.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Johansen J. T., Vallee B. L. Differences between the conformation of arsanilazotyrosine 248 of carboxypeptidase A in the crystalline state and in solution. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2532–2535. doi: 10.1073/pnas.68.10.2532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Johansen J. T., Vallee B. L. Environment and conformation dependent sensitivity of the arsanilazotyrosine-248 carboxypeptidase A chromophore. Biochemistry. 1975 Feb 25;14(4):649–660. doi: 10.1021/bi00675a001. [DOI] [PubMed] [Google Scholar]
  22. Knowles J. R. The intrinsic pKa-values of functional groups in enzymes: improper deductions from the pH-dependence of steady-state parameters. CRC Crit Rev Biochem. 1976 Nov;4(2):165–173. doi: 10.3109/10409237609105457. [DOI] [PubMed] [Google Scholar]
  23. Latt S. A., Vallee B. L. Spectral properties of cobalt carboxypeptidase. The effects of substrates and inhibitors. Biochemistry. 1971 Nov;10(23):4263–4270. doi: 10.1021/bi00799a017. [DOI] [PubMed] [Google Scholar]
  24. Lipscomb W. N. Carboxypeptidase A mechanisms. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3875–3878. doi: 10.1073/pnas.77.7.3875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lipscomb W. N., Hartsuck J. A., Reeke G. N., Jr, Quiocho F. A., Bethge P. H., Ludwig M. L., Steitz T. A., Muirhead H., Coppola J. C. The structure of carboxypeptidase A. VII. The 2.0-angstrom resolution studies of the enzyme and of its complex with glycyltyrosine, and mechanistic deductions. Brookhaven Symp Biol. 1968 Jun;21(1):24–90. [PubMed] [Google Scholar]
  26. Lipscomb W. N. Structure and catalysis of enzymes. Annu Rev Biochem. 1983;52:17–34. doi: 10.1146/annurev.bi.52.070183.000313. [DOI] [PubMed] [Google Scholar]
  27. Makinen M. W., Kuo L. C., Dymowski J. J., Jaffer S. Catalytic role of the metal ion of carboxypeptidase A in ester hydrolysis. J Biol Chem. 1979 Jan 25;254(2):356–366. [PubMed] [Google Scholar]
  28. Mock W. L., Chen J. T. The pH dependence of peptide hydrolysis by nitrocarboxypeptidase A. Arch Biochem Biophys. 1980 Sep;203(2):542–552. doi: 10.1016/0003-9861(80)90211-8. [DOI] [PubMed] [Google Scholar]
  29. Muszynska G., Riordan J. F. Chemical modification of carboxypeptidase A crystals. Nitration of tyrosine-248. Biochemistry. 1976 Jan 13;15(1):46–51. doi: 10.1021/bi00646a008. [DOI] [PubMed] [Google Scholar]
  30. Navon G., Shulman R. G., Wyluda B. J., Yamane T. Nuclear magnetic resonance studies of the active site of carboxypeptidase A. Proc Natl Acad Sci U S A. 1968 May;60(1):86–91. doi: 10.1073/pnas.60.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Quiocho F. A., Bethge P. H., Lipscomb W. N., Studebaker J. F., Brown R. D., Koenig S. H. X-ray diffraction and nuclear magnetic resonance dispersion studies on derivatives of carboxypeptidase A. Cold Spring Harb Symp Quant Biol. 1972;36:561–567. doi: 10.1101/sqb.1972.036.01.070. [DOI] [PubMed] [Google Scholar]
  32. Quiocho F. A., McMurray C. H., Lipscomb W. N. Similarities between the conformation of arsanilazotyrosine 248 of carboxypeptidase A in the crystalline state and in solution. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2850–2854. doi: 10.1073/pnas.69.10.2850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rees D. C., Honzatko R. B., Lipscomb W. N. Structure of an actively exchanging complex between carboxypeptidase A and a substrate analogue. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3288–3291. doi: 10.1073/pnas.77.6.3288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rees D. C., Lewis M., Lipscomb W. N. Refined crystal structure of carboxypeptidase A at 1.54 A resolution. J Mol Biol. 1983 Aug 5;168(2):367–387. doi: 10.1016/s0022-2836(83)80024-2. [DOI] [PubMed] [Google Scholar]
  35. Rees D. C., Lipscomb W. N. Binding of ligands to the active site of carboxypeptidase A. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5455–5459. doi: 10.1073/pnas.78.9.5455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rees D. C., Lipscomb W. N. Refined crystal structure of the potato inhibitor complex of carboxypeptidase A at 2.5 A resolution. J Mol Biol. 1982 Sep 25;160(3):475–498. doi: 10.1016/0022-2836(82)90309-6. [DOI] [PubMed] [Google Scholar]
  37. Riordan J. F., Muszynska G. Differences between the conformations of nitrotyrosyl-248 carboxypeptidase A in the crystalline state and in solution. Biochem Biophys Res Commun. 1974 Mar 25;57(2):447–451. doi: 10.1016/0006-291x(74)90951-6. [DOI] [PubMed] [Google Scholar]
  38. Scheule R. K., Van Wart H. E., Vallee B. L., Scheraga H. A. Resonance Raman spectroscopy of arsanilazocarboxypeptidase A: conformational equilibria in solution and crystal phases. Biochemistry. 1980 Feb 19;19(4):759–766. doi: 10.1021/bi00545a023. [DOI] [PubMed] [Google Scholar]
  39. Sielecki A. R., Hendrickson W. A., Broughton C. G., Delbaere L. T., Brayer G. D., James M. N. Protein structure refinement: Streptomyces griseus serine protease A at 1.8 A resolution. J Mol Biol. 1979 Nov 15;134(4):781–804. doi: 10.1016/0022-2836(79)90486-8. [DOI] [PubMed] [Google Scholar]
  40. Spilburg C. A., Bethune J. L., Valee B. L. Kinetic properties of crystalline enzymes. Carboxypeptidase A. Biochemistry. 1977 Mar 22;16(6):1142–1150. doi: 10.1021/bi00625a018. [DOI] [PubMed] [Google Scholar]
  41. Suh J., Kaiser E. T. pH dependence of the nitrotyrosine-248 and arsanilazotyrosine-248 carboxypeptidase A catalyzed hydrolysis of O-(trans-p-chlorocinnamoyl)-L-beta-phenyllactate. J Am Chem Soc. 1976 Mar 31;98(7):1940–1947. doi: 10.1021/ja00423a048. [DOI] [PubMed] [Google Scholar]
  42. Urdea M. S., Legg J. I. A peptidase-inactive derivative of carboxypeptidase A modified specifically at tyrosine 248. Cobalt(III) (ethylenediamine-N,N'-diacetato) (arsanilazotyrosinato 248 carboxypeptidase A). J Biol Chem. 1979 Dec 10;254(23):11868–11874. [PubMed] [Google Scholar]
  43. Vallee B. L., Galdes A. The metallobiochemistry of zinc enzymes. Adv Enzymol Relat Areas Mol Biol. 1984;56:283–430. doi: 10.1002/9780470123027.ch5. [DOI] [PubMed] [Google Scholar]
  44. Vallee B. L., Riordan J. F., Johansen J. T., Livingston D. M. Spectro-chemical probes for protein conformation and function. Cold Spring Harb Symp Quant Biol. 1972;36:517–531. doi: 10.1101/sqb.1972.036.01.066. [DOI] [PubMed] [Google Scholar]
  45. Woolley P. Models for metal ion function in carbonic anhydrase. Nature. 1975 Dec 25;258(5537):677–682. doi: 10.1038/258677a0. [DOI] [PubMed] [Google Scholar]
  46. Wyckoff H. W., Doscher M., Tsernoglou D., Inagami T., Johnson L. N., Hardman K. D., Allewell N. M., Kelly D. M., Richards F. M. Design of a diffractometer and flow cell system for X-ray analysis of crystalline proteins with applications to the crystal chemistry of ribonuclease-S. J Mol Biol. 1967 Aug 14;27(3):563–578. doi: 10.1016/0022-2836(67)90059-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES